مقالات درس فیزیک پزشکی

برای اعمال دیاترمی و ورود جریانهای پر فرکانس به بدن بیماران از چه روشهایی استفاده می شود؟

برای اعمال دیاترمی و ورود جریانهای پر فرکانس به بدن بیماران از چه روشهایی استفاده می شود؟

برای اعمال دیاترمی و ورود جریانهای پر فرکانس به بدن بیماران از چه روشهایی استفاده می شود؟ برای این منظور یا از روش خازنی استفاده می شود و یا از روش کابلی، در روش خازنی، بدن بیمار در بین دوالکترود که در واقع دو صفحه ی یک خازن هستند قرار می گیرد و به این ترتیب یک میدان الکتریکی به بدن بیمار اعمال می شود، در روش کابلی نیز از یک سیم پیچ برای درمان استفاده می شود، به این صورت که بدن بیمار هم در معرض یک میدان الکتریکی که بین ابتدا و انتهای سیم پیچ بوجود می آید قرار می گیرد و هم در معرض یک میدان مفناطیسی که در وسط سیم پیچ داریم. نکته ی قابل توجه توسط کاربر دیاترمی آن است که در روش خازنی، میزان گرمای تولیدی با چگونگی پخش خطوط میدان الکتریکی در بدن بیمار مشخص می شود، و هر جا که خطوط میدان تراکم بیشتری داشته باشد گرمای بیشتری تولید می شود و بالعکس. به همین ترتیب وقتی که بین الکترودهای خازن که دو طرف عضو بدن بیمار قرار گرفته اند یک میدان الکتریکی برقرار می کنیم، خطوط میدان ابتدا از هوا با ثابت دی الکتریک 1 عبور می کنند و سپس به عضو بدن با ثابت دی الکتریک حدود 80 می رسند، بنابراین خطوط میدان که در خارج بدن به هم نزدیک هستند در زمان ورود به بدن از هم دور می شوند و از تراکم آنها در نواحی عمیق کاسته می شود. بنابراین بافتهای سطحی نسبت به بافت های عمقی بیشتر گرم می شوند، البته یک استثنا هم وجود دارد که در آن حرارت بافتهای عمقی بیشتر از بافتهای سطحی است و آن زمانی است که مقطع عرضی واقع در مسیر عبور خطوط الکتریکی، کمتر از سطح الکترودها باشد، در این حالت همه ی خطوط از یک مسیر باریک عبور می کنند و گرمای عمقی بیشتر می شود. نکته ی دیگر آن است که خطوط میدان الکتریکی از بافتهایی که مقاومت کمتری دارند یا به عبارت دیگر ثابت دی الکتریک بزرگتری دارند، بهتر عبور می کنند، مثلاً اگه در بدن بیمار یک قطعه ی فلزی وجود داشته باشد، تراکم خطوط میدان در قطعه ی فلزی افزایش پیدا میکند و قطعه فلزی بیشتر گرم می شود، یا خون و ماهیچه ها که مقاومت کمتری نسبت به چربی و لیگامنت ها دارند، خطوط میدان را بهتر هدایت می کنند و بیشتر گرم می شوند، در نهایت به این موضوع هم دقت کنید که خطوط میدان در هنگام عبور از دی الکتریک از هم فاصله می گیرند و دور می شوند.  در روش کابلی، الکترود ما یک کابل با پوشش نارسانا است که یا به دور عضو مورد نظر پیچیده می شود و یا به صورت حلزونی بر روی عضو مورد نظر قرار می گیرد، طول کابل نیز باید مضرب صحیحی از نصف طول موج باشد. در روش کابلی از هر دو اثر میدان الکتریکی و میدان مغناطیسی به صورت همزمان برای گرم کردن بافت تحت درمان استفاده می کنیم، به این صورت که با عبور جریان پر فرکانس از کابل ، یک میدان الکترواستاتیکی بین دو پایه ی کابل، که شکمهای پتانسیل در آنجا قرار دارند، ایجاد می شود و در محل هایی که کابل پیچ می خورد یک میدان مغناطیسی متغیر در اطراف کابل داریم، منتها این موضوع به این معنا نیست که چون هم میدان الکتریکی و هم میدان مغناطیسی داریم، انرژی که در این روش به بدن بیمار وارد می شود نسبت به روش خازنی بیشتر است، تنها تفاوتی که وجود دارد این است که در روش خازنی کل انرژی توسط میدان الکتریکی اعمال می شود، اما در روش کابلی، انرژی بین میدان الکتریکی و مغناطیسی توزیع می شود. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب
اثرات قطعی و احتمالی پرتوهای یونیزان چیست؟

اثرات قطعی و احتمالی پرتوهای یونیزان چیست؟

اثرات پرتوهای یونیزان معمولاً به دو دسته ی اثرات قطعی یا Deterministic effect و اثرات احتمالی یاstochastic effect تقسیم بندی می شود، اثرات احتمالی اثراتی هستند که احتمال وقوع آنها قطعی نیست منتها با یک احتمال مشخص همراه می باشد و در آن احتمال وقوع اثر با افزایش دُز افزایش پیدا میکند، بنابراین اثرات احتمالی بدون آستانه هستند، یعنی دوز صفر بی خطر می باشد، منتها هر چه از دوز صفر بالاتر برویم، احتمال اثرات بیولوژیکی افزایش پیدا میکند، به عنوان مثال مخاطرات ناشی از تصویر برداری تشخیصی به استثناء تابش گیری جنین در رحم مادر جزو اثرات تصادفی پرتو محسوب میشوند، سرطانها به غیر از سرطان پوست و لوسمی هم جزو اثرات احتمالی پرتو هستند و علاوه بر اینها اثرات ژنتیکی که در اثر ایجاد اختلال در سیستم ژنتیکی یا همان موتاسیون ژنتیکی اتفاق می افتند و ممکن است در نسل بعدی یا چندین نسل بعد ظاهر بشوند نیز جزو اثرات احتمالی پرتو هستند. در طرف مقابل اثرات قطعی اثراتی هستند که بدون شک در یک فرد در اثر پرتوگیری رخ می دهند، و این آثار بر خلاف آثار قبلی، دارای آستانه هستند، به این صورت که اگر دوز، کمتر از حد آستانه باشد، احتمال ایجاد یک اثر مشخص، صفر است، منتها اگر دز از حد آستانه بیش تر بشود، شدت بروز اثر هم افزایش پیدا میکند. به عنوان مثال کاتاراکت، سرخی پوست و عقیمی جزو اثرات قطعی پرتو محسوب میشوند. به این نکته هم دقت کنید که میزان دوز آستانه در اثرات قطعی بالا است و در مقادیر کم تر از دوز آستانه، احتمال بروز اثر صفر می باشد، بنابراین اگر مثلا یک فردی به تعداد زیاد رادیوگرافی انجام بدهد، احتمال عقیم شدن برای آن فرد صفر است، منتها در فلوروسکوپی های طولانی یا رادیوتراپی، که دز از حد آستانه بیشتر میشود، احتمال بروز اثرات قطعی مثل عقیمی و یا ریزش مو وجود دارد.

ادامه مطلب
علم حفاظت در برابر اشعه چیست؟

علم حفاظت در برابر اشعه چیست؟

در مورد تعریف حفاظت در برابر اشعه بیان میشود علمی است که به موضوع حفاظت افراد، جوامع انسانی و محیط زیست در برابر خطرات پرتوهای یونساز و غیریونساز می پردازد، و متخصصین حفاظت در برابر اشعه کسانی هستند که مسؤل جنبه های ایمنی، در طراحی فرایندها و تجهیزاتی هستند که از منابع پرتوزا استفاده می کنند، به نحوه ی که تابش به پرسنل به حداقل ممکن برسد و همواره در محدوده های مجاز قرار بگیرد، مثلاً در تولید یک رادیوایزوتوپ اینکه دستگاه ها و تجهیزات چطور عمل کنند، فرایندها در چه محیطی انجام بشود، افراد چند ساعت در روز با این محیط در تماس باشند، یا چه حفاظهایی مورد استفاده قرار بگیرد تا به افراد و محیط زیست آسیبی وارد نشود، همگی بر عهده ی مسئول حفاظت در برابر اشعه می باشد. تاریخچه ی بوجود آمدن علم حفاظت در برابر اشعه نیز به زمان کشف اشعه ی ایکس توسط رونتگن برمیگردد، بطوریکه چند ماه بعد از کشف اشعه X بسیاری از خطرات آن شناخته شدند، مثلاً در سال 1896، 23 مورد التهاب پوستی ناشی از پرتوگیری در مجلات دنیا گزارش شد و بین سالهای 1911تا 1914 فقط در3 مقاله ی مروری 54 مورد مرگ در اثر سرطان و 198مورد بدخیمی در اثر پرتوگیری ثبت شد، و محققین بسیاری در اثر کار زیاد با پرتوهای ایکس جان خودشان را از دست دادند. این حوادث آنقدر ادامه پیدا کرد تا اینکه اولین اقدام رسمی در سال 1921 در بریتانیا انجام شد و کمیته ی حفاظت در برابر پرتوهای ایکس و رادیوم تشکیل شد، منتها مشکلی که وجود داشت این بود که تا آن زمان برای ارزیابی و بررسی کمی و کیفی پرتوها هیچ واحد دقیقی وجود نداشت، و واحد Erithm یا سرخی پوست که در آن زمان تعریف شد و به مقدار اشعه ای گفته می شد که پوست را به یک مقدار مشخصی قرمز کند واحد درستی نبود، به این دلیل که اولاً باید یک فردی تحت تابش قرار بگیرد، ثانیاً حساسیت پوست افراد مختلف متفاوت است و ثالثا حساسیت پوست در نقاط مختلف بدن با هم فرق دارد، بنابراین این کمیته کار زیادی نتوانست انجام بدهد.  نهایتاً در سال 1928 در دومین کنگره ی بین المللی رادیولوژی (ICR) کمیته ای برای تعریف رونتگن(R) به عنوان واحد تابش پرتو تعیین شد، که این کمیته در سال 1937 واحد رونتگن را بصورت مقدار پرتوی X یا گامایی که بتونه در شرایط دمایی، فشاری متعارف2.58*10-4  ، کولن بارالکتریکی در یک کیلوگرم هوای خشک آزاد کنه تعریف کرد. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب
نسلهای مختلف دستگاههای CT چیست؟

نسلهای مختلف دستگاههای CT چیست؟

دستگاه های CT براساس هندسه ی اسکن، حرکت اسکن  و تعداد آشکارسازهای مورد استفاده در 4 نسل مختلف دسته بندی می شوند، به این صورت که دستگاه های CT نسل اول که برای اولین بار توسط هانسفید ساخته شده و مورد استفاده قرار گرفتند، از یک بیم اشعه ی ایکس مدادی شکل برای تصویر برداری استفاده می کردند، به این صورت که پرتوهای  ایکس تولیدی توسط تیوب اشعه ی ایکس به شدت کالیمه می شدند، بطوریکه ما فقط یک Ray یا پرتوی ایکس در خروجی داشتیم، و این شعاع پرتو ایکس در مقابل یک آشکارساز قرار می گرفت، در مرحله ی بعد این شعاع پرتو ایکس و آشکارساز به طور همزمان در عرض بدن بیمار حرکت می کردند و پرتوهای عبوری از بدن بیمار توسط آشکارساز انداره گیری می شد، بعد از این حرکت که به آن حرکت انتقالی یا Translate گفته می شود، تیوب و آشکارساز به اندازه ی یک درجه می چرخیدند و مجدداً حرکت انتقالی جدیدی را انجام می دادند، این پروسه آنقدر تکرار میشد تا از زوایای مختلف بدن یا به عبارت دیگر از View های مختلف بدن کار جمع آوری اطلاعات انجام بشود. نهایتاً به این نسل از دستگاه های CT با توجه پرتو ایکس مدادی شکلی که استفاده می کنند و ژئومتری یا همان هندسه ی دریافت اطلاعاتی که دارند اصطلاحاً دستگاههای سی تی انتقالی/چرخشی با بیم مدادی شکل یا  Rotate /Translate Pencil Beam  گفته می شود، منتها عیب بسیار بزرگ این نسل از دستگاههای سی تی، زمان بسیار زیاد آنها برای تصویربرداری بود، بطوریکه برای تصویربرداری از هر اسلایس به زمانی در حدود 6 تا 7 دقیقه نیاز بود و این زمان زیاد باعث رنجش بیمار می شد. برای رفع این محدودیت و کاهش زمان تصویربرداری دستگاه های CT نسل دوم ساخته شدند، که در این دستگاه ها هم مثل دستگاه های نسل اول از حرکات انتقالی- چرخشی استفاده می شد، منتها به جای یک آشکارساز که در نسل اول داشتیم، در نسل دوم از حدود 30 آشکارساز استفاده کردند، یعنی در نسل دوم یک ردیف آشکارساز خطی داشتیم که در مقابل تیوب اشعه ی ایکس قرار داشتند و با تیوب کوپل شده بودند. تفاوت دیگر نسل دوم با نسل اول این بود که در این نسل از ژئومتری یا هندسه ی بیم بادبزنی شکل یا Fan Beam استفاده شد، یعنی برخلاف نسل اول که شعاع پرتوهای ایکس موازی هم بودند، در نسل دوم هندسه ی شعاع پرتوها به شکل یک بادبزن یا Fan کوچک بود که راس بادبزن از تیوب اشعه ی ایکس شروع می شد و پرتوها با حرکت به سمت آشکارسازها از هم واگرا می شدند و به یک ردیف آشکارساز برخورد می کردند. به این ترتیب در سی تی نسل دوم اگر مثلاً 30 تا آشکارساز داشتیم، با هر بار تابش دهی اطلاعات در 30 راستا توسط 30 پرتو بدست می آمد، که این را معادل 30 درجه قرار می دادند و بعد از اینکه حرکت انتقالی تکمیل می شد به جای اینکه دستگاه برای انجام حرکت انتقالی بعدی یک درجه چرخش انجام بدهد،  30 درجه می چرخید. به این ترتیب در نسل دوم با افزایش تعداد آشکارسازها و همچنین افزایش زاویه های چرخش زمان اسکن کاهش پیدا کرد، بطوریکه برای اسکن یک مقطع با توجه به تعداد آشکارسازها و زاویه های چرخش به زمانی بین  20 ثانیه تا 5/3 دقیقه نیاز بود. به نسل دوم دستگاه های CT اصطلاحاً انتقالی- چرخشی با بیم بادبزنی باریک یا Rotate / Translate Narrow Fan Beam گفته می شود.  نسل سوم دستگاههای سی تی هم اصطلاحا به چرخشی-چرخشی با بیم پهن یا Rotate / Rotate Wide Fan Beam  معروف هستند، که در آنها زاویه ی دسته پرتو ایکسی که به بدن بیمار می رسد، بین 30 تا 40 درجه است و همه ی حجم مورد تصویربرداری را در بر می گیرد، به این صورت که سیستم تیوب اشعه ی ایکس و آشکارساز با هم به طور همزمان یک حرکت چرخشی به اندازه ی 180 یا 360 درجه انجام می دهند و اطلاعات مربوط به یک مقطع را جمع آوری می کنند، در این نسل با توجه به افزایش زاویه ی بیم بادبزنی، تعداد آشکارسازهای مورد استفاده هم افزایش پیدا کرد، بطوریکه کمپانی های مختلف از حدود 288 تا 1024 آشکارساز را برای ساخت این نسل از دستگاه های CT مورد استفاده قرار دادند. در نسل سوم با توجه به اینکه حرکت انتقالی یا Translate حذف شد، زمان اسکن به کمتر از 10 ثانیه به ازای هر اسلایس رسید و این کاهش زمان باعث افزایش عملکرد بیمار و کاهش آرتیفکت حرکتی در تصاویر CT شد. در نسل چهارم دستگاه های CT که به آن اصطلاحاً Rotate/Stationary گفته می شود، حدود 4000 آشکارساز را بر روی یک دایره ی کامل در اطراف گانتری قرار دادند، و تیوب اشعه ی ایکس بر روی یک رینگ ثابت به دور بدن  بیمار می چرخید، به این ترتیب در نسل چهارم دستگاههای سی تی، شعاع پرتو بادبزنی در داخل یک حلقه ی ثابت از آشکارسازها در حال چرخش است، نهایتا مهمترین مزیت سی تی نسل چهارم علاوه بر کاهش زمان اسکن به حدود یک ثانیه آن است که در آن آرتیفکتی به نام Ring Artifact که در نسل سوم داشتیم وجود ندارد. اما نکته ای که در مورد دستگاه های نسل یک تا چهار وجود دارد آن است که در همه ی این نسلها، حرکت تخت بصورت Scan And Step است، یعنی تصویر یک اسلایس گرفته می شود، و بعد از آن برای تصویربرداری از اسلایس بعدی تخت یک مقدار به جلو حرکت میکند و در موقعیت جدید برای تصویربرداری از اسلایس بعدی متوقف می شود، به این ترتیب برای همه ی اسلایسها این حرکت و توقف تخت انجام می شود. منتها در دستگاه های سی تی اسپایرال که به آن سی تی هلیکال هم گفته می شود، همزمان با شروع تابش پرتو از تیوب اشعه ی ایکس، تخت با سرعت یکنواخت شروع به حرکت می کند و دریافت اطلاعات در حین حرکت تخت انجام می شود، بنابراین در CT اسپایرال، زمانی که برای حرکت تخت بیمار از یک برش به برش دیگر در نسلهای قبلی مورد نیاز بود، را نداریم و در نتیجه زمان تصویربرداری کاهش پیدا می کند. علاوه بر این در نسلهای قبل اطلاعات به صورت گسسته و اسلایس به اسلایس بدست می آمدند و در نتیجه اطلاعات بین دو اسلایس را از دست میدادیم، مگر اینکه دو اسلایس در کنار هم قرار میگرفتند، که در این شرایط هم زمان تصویربرداری و هم دز بیمار افزایش پیدا می کردند، منتها در CT اسپایرال، اطلاعات به جای یک مقطع از یک حجم از بدن بیمار و به صورت پیوسته بدست می آید، و به این ترتیب هم دز بیمار کاهش پیدا می کند و هم زمان تصویربرداری کم می شود. نهایتا در سی تی اسپایرال دو عامل خصوصیات تصویر CT را کنترل می کند، اولین عامل ضخامت برش است که بر کیفیت، وضوح و همچنین میزان نویز تصویر تأثیر می گذارد، به این صورت که هر چه ضخامت اسلایس یا همان پهنای بیم اشعه ی ایکس افزایش پیدا کند، نویز تصویر کاهش پیدا می کند، اما قدرت تفکیک یا همان رزولوشن تصویر CT هم کم می شود، عامل دوم هم سرعت حرکت تخت است، که سرعت حرکت تخت تابعی از ضخامت برش است، و اینها با عاملی به نام گام با هم در ارتباطند. اگر ضخامت برش را ثابت در نظر بگیریم، گام های بزرگتر به معنای آن است  که در طی یک دور چرخش گانتری به دور بدن بیمار، تخت مسافت بیشتری را طی کرده و در نتیجه حجم اطلاعات دریافتی کاهش پیدا کرده است، که این کاهش اطلاعات بر روی بازسازی تصویر اثر منفی می گذارد، بنابراین حداکثر گامی که معمولا استفاده میشود حدود 1.5 است، تا به این ترتیب کیفیت تصاویر دریافتی در حد مطلوبی باقی بماند، اگه مقدار گام برابر یک باشد، به این معنا است که چرخش ها دقیقا در کنار هم انجام شده اند. مزیت مهم CT اسپایرال کاهش زمان تصویربرداری و دز بیمار است، بطوریکه توسط آن می توانیم حتی از بافت های متحرک مثل قلب و ریه هم تصویر داشته باشیم. نهایتا نوع دیگری از دستگاه های CT که معرفی شدند، دستگاه های Multi Slice هستند، که تفاوت آنها با CT اسپایرال در این است که در سی تی اسپایرال فقط یک ردیف آشکارساز در کنار هم داریم، در حالی که در اینجا چندین ردیف آشکارساز در کنار هم قرار می گیرند، مثلاً در دستگاه های 16 اسلایسی، 16 ردیف دتکتور در کنار هم قرار گرفته اند، بنابراین  بر خلاف نسلهای قبل که ضخامت اسلایسها تعیین کننده ی رزولوشن یا همان قدرت تفکیک تصاویر سی تی بود، در این نسل ضخامت دتکتورها تعیین کننده ی رزولوشن تصاویر است، مثلاً اگر ضخامت هر ردیف آشکارساز 0.5 سانتی متر باشد و دستگاه CT ی ما 16 اسلایس باشد، دیگر نیاز نیست 16 تا اسلایس 0.5 سانتی متری در کنار هم بزنیم. بلکه به جای آن اسلایس ها را 8 سانتی متر به 8 سانتی متر می زنیم، و به این ترتیب زمان تصویربرداری با حفظ رزولوشن تصویر، بطور قابل ملاحظه ای کاهش پیدا می کند. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب
تصویربرداری توموگرافی کامپیوتری یا CT چیست؟

تصویربرداری توموگرافی کامپیوتری یا CT چیست؟

CT مخفف Computed Tomography می باشد و Computed Tomography به معنای نمایش یک برش یا Slice از یک جسم بصورت کامپیوتری است، به این معنا که در روش CT ما به جای تصاویر آناتومیکی که در رادیولوژی داشتیم، یک سری تصویر مقطعی داریم، که این تصاویر مقطعی به این صورت ساخته می شوند که فوتونها از یک مقطع نازک از بدن که به آن مقطع توموگرافی یا اسلایس گفته می شود، عبور میکنند و بوسیله ی آشکارسازها شمارش می شوند، در مرحله ی بعد فوتونهای شمارش شده برای آنالیز ریاضی به کامپیوتر منتقل شده و بعد از آنالیز اطلاعات توسط کامپیوتر، یک تصویر ساخته می شود که به آن تصویر CT گفته میشود. بنابراین بطور خلاصه، به تصویربرداری از اعضای داخلی بدن در مقاطع یا برش های عرضی، CT گفته می شود. نحوه ی عملکرد تیوب اشعه ی ایکس در دستگاه CT نیز مشابه دستگاههای رادیولوژی می باشد، با این تفاوت که برخلاف دستگاه های رادیولوژی که در آن ولتاژهای حدود 35 تا 150 کیلوالکترون ولت را داشتیم، در دستگاههای سی تی فقط 3 یا  4 انرژی مختلف داریم، به عنوان مثال در بعضی از دستگاههای CT فقط ولتاژهای 80 ، 100، 120 و 140 کیلوالکترون ولت را داریم و در بعضی از دستگاهها هم فقط ولتاژهای 80 ، 110 و 130 کیلوالکترون ولت در دسترس هستند، که ولتاژ 80 معمولاً برای تصویربرداری CT از کودکان استفاده می شود و ولتاژهای 100 به بالا برای تصویربرداری CT  از بزرگسالان. از طرف دیگر در دستگاه های CT برخلاف دستگاه های رادیولوژی که آشکارساز، فیلم و صفحه بود، از آشکارسازهای Active که معمولاً از جنس سنتیلاسیون هستند استفاده می شود، به این صورت که وقتی فوتونهای عبوری از بدن بیمار با آشکارسازهای سنتیلاسیون برخورد می کنند، ازآشکارساز نور مرئی ساطع می شود و این نور برای ساخت تصویر سی تی تقویت شده و مورد استفاده قرار میگیرد. در بعضی از دستگاه های CT هم از آشکارسازهای اتاقک یونیزاسیون استفاده میشود، به این صورت که پرتوهای ایکس در اثر برخورد با گاز درون اتاقک باعث یونیزه شدن اتمهای گاز می شوند و در مرحله ی بعد با جمع آوری این یونهای مثبت و منفی، یک پالس الکتریکی تولید می شود، که می توانیم از آن برای ساخت تصویر استفاده کنیم. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب
 دستگاه های فلوروسکپی به چند دسته تقسیم بندی می شوند؟

دستگاه های فلوروسکپی به چند دسته تقسیم بندی می شوند؟

دستگاه های فلوروسکپی به 4 دسته ی کلی تقسیم بندی می شوند، دسته ی اول remote control system ها هستند، که در این سیستم ها اپراتور می تواند از خارج اتاقی که دستگاه در آن قرار دارد، کار فلوروسکپی را انجام بدهد، دسته ی دوم mobile c-arm ها هستند، که این دستگاهها معمولاً برای عمل های جراحی مورد استفاده قرار می گیرند، دسته ی سوم interventional  radiology system  ها هستند، که در آن اپراتور در هنگام پرتودهی نزدیک بیمار قرار می گیرد و به همین دلیل از نظر حفاظت در برابر اشعه شرایط خاصی دارد که باید رعایت بشود، به عنوان مثال دستگاه هایی که برای آنژیوگرافی مورد استفاده قرار می گیرند جزو interventional  radiology system ها هستند، و نهایتاً multipurpose fluoroscopy system  ها را داریم، که می توانیم از آنها هم بصورت کنترل از راه دور و هم به عنوان سیستم های مداخله ای استفاده کنیم، و کار فلوروسکپی از همه ی اندام ها را توسط این سیستمها انجام بدهیم. توجه کنید که اساس کار همه ی دستگاه های فلوروسکپی یکی می باشد، و فقط دستگاههای آنژیوگرافی یک مقدار مکانیسم متفاوتی دارند، و در واقع به دلیل همین مکانیسم متفاوت، به دستگاه های آنژیوگرافی، دستگاههای DSA هم گفته میشود، که مخفف Digital Subtraction Angiography  است. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب
 فلوروسکپی چیست؟

فلوروسکپی چیست؟

 روش فلوروسکپی یک روش تشخیصی است که برای مشاهده ی عملکرد و function مورد استفاده قرار می گیرد و می توانیم توسط آن تصویر اندام های داخلی بدن را بصورت زنده دریافت کنیم، در حالی که در رادیولوژی ساده، آناتومی بدن بیمار ملاحظه می شود و تصاویر آن تصاویر ثابت دو بعدی و لحظه ای از یک اندام هستند. در فلورسکپی از مواد کنتراست زایی مثل باریم یا هوا استفاده می شود تا حرکت ماده ی حاجب را در مسیر لوله ی گوارش، در داخل قلب، در داخل معده و یا سایر اندام ها به صورت زنده ببینند، و این حرکات به جای فیلم، بر روی یک صفحه ی فلورسانس و یا بر روی مانیتور یک کامپیوتر قابل مشاهده می باشد. فلوروسکپی به دو روش انجام می شود، روش اول، روش مستقیم است که در حال حاضر این روش منسوخ شده و فلوروسکپی به این روش ممنوع می باشد، در این روش به جای فیلم از یک صفحه ی فلورسانس استفاده می شود و وقتی پرتوهای ایکس با این صفحه ی فلورسانس برخورد می کنند، در محل برخورد پرتوها، انرژی در محدوده ی نور مرئی ساطع می شود، و به این ترتیب می توانیم به صورت online و همزمان، تصویر را ببینیم، اما چون شدت نور مرئی تابشی توسط صفحه ی فلورسانس بسیار پایین است، این روش حتماً باید در یک اتاق تاریک انجام شود و پزشک باید حدود 20 دقیقه در اتاق صبر کند تا چشمش به تاریکی اتاق عادت کند. نکته ای که وجود داره این است که در این روش دُز بیمار و پزشک بسیار بالا است و کیفیت تصویر فلوروسکپی بسیار پایین می باشد. به همین دلیل در حال حاظر از روش فلوروسکپی غیر مستقیم استفاده می شود، که در آن از لامپ های تقویت کننده ی تصویر یا image intensifier ها به عنوان دریافت کننده و تقویت کننده ی تصویر استفاده می شود، تا به این ترتیب مشکلی که در فلوروسکپی مستقیم داشتیم و شدت نور مریی خروجی کم بود، حل شود. بنابراین در سیستم های فلوروسکپی به جای اسکرین-فیلم که در سیستمهای رادیولوژی Conventional داریم، از  image intensifier ها به عنوان آشکار ساز استفاده می شود. تیوب تقویت کننده تصویر یا  image intensifier از یک محفظه ی شیشه ای خلاء ساخته شده که در داخل آن 4 قسمت اصلی و مهم داریم. اولین قسمت، صفحه ی فسفر ورودی یا input phosphor است، که پرتوهای ایکس عبوری از بدن بیمار با این صفحه برخورد می کنند و انرژی آنها به پرتوهای نور مرئی تبدیل می شود، منتها نور مرئی تولیدی توسط صفحه ی فسفر ورودی بسیار ضعیف است و بایستی تقویت بشود، بنابراین در مرحله ی بعد این پرتوهای نورانی با یک لایه به نام فوتوکاتد که کاملاً به لایه ی فسفر ورودی متصل است برخورد می کنند و در اثر برخورد فوتونهای نورانی با فوتو کاتد، انرژی نورانی به الکترون تبدیل می شود، از طرفی، الکترون ها دارای بار منفی هستند، بنابراین بعد از تولید همدیگر را دفع می کنند، و ما برای اینکه این الکترونها را بر روی صفحه ی فسفر خروجی متمرکز کنیم، از عدسیهای کانونی کننده استفاده میکنیم، که این عدسی ها از طریق یک میدان الکتریکی، الکترونها را بر روی یک نقطه در گردن آند متمرکز می کنند، قسمت سوم لامپ تقویت کننده ی تصویر هم آند شتاب دهنده است، و چون آند شتابدهنده حدود 25 تا 30 کیلو ولت نسبت به فوتوکاتد پتانسیل مثبت دارد، الکترونها در حین حرکت از فوتوکاتد به سمت آند، شتاب می گیرند و نهایتاً بعد از برخورد با قسمت چهارم لامپ تقویت کننده ی تصویر یعنی صفحه ی فسفر خروجی، این جریان الکترونی به فوتون های نورانی تبدیل می شود، و یک تصویر معکوس بر روی صفحه ی فسفر خروجی تشکیل میدهد، حال اگه در پشت فسفر خروجی یک دوربین عکاسی قرار بدهیم، که از نور مرئی تولیدی بصورت پشت سر هم عکس بگیرد، در این صورت، از حرکت اجزای بافت یک فیلم ساخته می شود، که از قابلیت ضبط و ذخیره برخوردار است. نهایتاً نکته ای که در مورد image intensifier وجود دارد آن است که در حرکت الکترونها از فوتوکاتد به سمت آند، جریان الکترونی حدود 50 برابر تقویت می شود، که به آن بهره ی جریان میگوییم، به این معنا که به ازای هر فوتون نوری در صفحه ی ورودی، 50 فوتون نوری از صفحه ی خروجی تابش می شود، وبه این ترتیب روشنایی تصویر فلوروسکپی با ضریب 50 افزایش پیدا می کند. از طرف دیگر نسبت ابعاد صفحه ی ورودی به صفحه ی خروجی معمولا 10 به 1 می باشد، و این یعنی روشنایی تصویر خروجی به خاطر کاهشی که در اندازه ی تصویر اتفاق می افتد، 100 برابر افزایش پیدا میکند. بنابراین با توجه به اینکه بهره ی جریان 50 و بهره ی کوچک نمایی 100 داریم، روشنایی تصویر خروجی در این مثال 5000 برابر تقویت میشود، که به این عدد بهره ی روشنایی گفته میشود و از حاصلضرب بهره ی جریان در بهره ی کوچک نمایی قابل محاسبه است.  بهره کوچک نمایی* بهره جریان = بهره روشنایی  به این ترتیب image intensifier ها علاوه بر کاهش دُز بیمار، موجب افزایش کیفیت تصاویر فلوروسکپی شده و امکان ذخیره سازی ، بررسی و همچنین دستکاری تصاویر فلوروسکپی را هم بوجود می آورد. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب
رزولوشن یا قدرت تفکیک فضایی در التراسوند به چه معناست؟

رزولوشن یا قدرت تفکیک فضایی در التراسوند به چه معناست؟

  رزولوشن یا قدرت تفکیک فضایی، به توانایی سیستم برای ثبت جزئیات اشاره می کند، به این معنا که هرچه رزولوشن سیستم در تشخیص دو نقطه ی نزدیک به هم به عنوان نقاط جدا و متمایز بیشتر باشد، مرزهایی که به هم نزدیکتر هستند، در تصویر از یکدیگر قابلیت تفکیک و تشخیص بیشتری دارند، در سیستم های سونوگرافی به غیر از  M Mode , A Modeکه تکنیک های تصویر برداری یک بعدی هستند، بقیه ی تکنیک های تصویربرداری دو بعدی هستند و برای آنها دو نوع رزولوشن داریم. 1-رزولوشن محوری یا Axial Resolution و 2- روزلوشن جانبی یا Lateral Resolution. رزولوشن محوری یا طولی بیان می کند که دو جسم تا چه حد در راستای موازی با محور پرتو می توانند به هم نزدیک باشند تا دستگاه همچنان بتواند آنها را به صورت نقاط مجزای از هم تشخیص بدهد. تفکیک پذیری محوری به اندازه ی طول پالس وابسته است و بهترین تفکیک پذیری محوری زمانی اتفاق می افتد که فاصله ی دو نقطه ی مورد نظر برابر نصف طول پالس باشد، تا به این ترتیب پرتوهای بازتابش شده از دو جسم نه با همدیگر همپوشانی داشته باشند که دستگاه آنها را یک جسم تلقی کند و نه از همدیگر فاصله داشته باشند که کیفیت کاهش پیدا کند، بلکه دقیقاً پشت سر هم قرار بگیرند تا مرزها از همدیگر قابل افتراق باشند. نهایتا هر چه عدد تفکیک پذیری یک دستگاه کوچکتر باشد، توانایی آن دستگاه در تفکیک دو نقطه ی نزدیکتر بیشتر است. تفکیک پذیری جانبی به کوچکترین فاصله ی دو جسم در راستای عمود بر محور موج اشاره دارد، که دستگاه می تواند آن دو جسم را جدای از هم تلقی کند، به عبارت دیگر دو نقطه که در یک عمق مشابه از بدن قرار دارند را چقدر می توانیم به هم نزدیک کنیم در حالی که در تصویر به صورت دو نقطه ی متمایز دیده شوند. رزولوشن جانبی تحت تأثیر پهنای عرضی موج و عمق میدان می باشد، یعنی هرچه قطر باریکه ی فراصوتی در یک عمق مشخص کوچکتر باشد، در آن عمق مشخص رزولوشن جانبی بهتری داریم. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

ادامه مطلب