روش فلوروسکپی یک روش تشخیصی است که برای مشاهده ی عملکرد و function مورد استفاده قرار می گیرد و می توانیم توسط آن تصویر اندام های داخلی بدن را بصورت زنده دریافت کنیم، در حالی که در رادیولوژی ساده، آناتومی بدن بیمار ملاحظه می شود و تصاویر آن تصاویر ثابت دو بعدی و لحظه ای از یک اندام هستند. در فلورسکپی از مواد کنتراست زایی مثل باریم یا هوا استفاده می شود تا حرکت ماده ی حاجب را در مسیر لوله ی گوارش، در داخل قلب، در داخل معده و یا سایر اندام ها به صورت زنده ببینند، و این حرکات به جای فیلم، بر روی یک صفحه ی فلورسانس و یا بر روی مانیتور یک کامپیوتر قابل مشاهده می باشد. فلوروسکپی به دو روش انجام می شود، روش اول، روش مستقیم است که در حال حاضر این روش منسوخ شده و فلوروسکپی به این روش ممنوع می باشد، در این روش به جای فیلم از یک صفحه ی فلورسانس استفاده می شود و وقتی پرتوهای ایکس با این صفحه ی فلورسانس برخورد می کنند، در محل برخورد پرتوها، انرژی در محدوده ی نور مرئی ساطع می شود، و به این ترتیب می توانیم به صورت online و همزمان، تصویر را ببینیم، اما چون شدت نور مرئی تابشی توسط صفحه ی فلورسانس بسیار پایین است، این روش حتماً باید در یک اتاق تاریک انجام شود و پزشک باید حدود 20 دقیقه در اتاق صبر کند تا چشمش به تاریکی اتاق عادت کند. نکته ای که وجود داره این است که در این روش دُز بیمار و پزشک بسیار بالا است و کیفیت تصویر فلوروسکپی بسیار پایین می باشد. به همین دلیل در حال حاظر از روش فلوروسکپی غیر مستقیم استفاده می شود، که در آن از لامپ های تقویت کننده ی تصویر یا image intensifier ها به عنوان دریافت کننده و تقویت کننده ی تصویر استفاده می شود، تا به این ترتیب مشکلی که در فلوروسکپی مستقیم داشتیم و شدت نور مریی خروجی کم بود، حل شود. بنابراین در سیستم های فلوروسکپی به جای اسکرین-فیلم که در سیستمهای رادیولوژی Conventional داریم، از image intensifier ها به عنوان آشکار ساز استفاده می شود.
تیوب تقویت کننده تصویر یا image intensifier از یک محفظه ی شیشه ای خلاء ساخته شده که در داخل آن 4 قسمت اصلی و مهم داریم. اولین قسمت، صفحه ی فسفر ورودی یا input phosphor است، که پرتوهای ایکس عبوری از بدن بیمار با این صفحه برخورد می کنند و انرژی آنها به پرتوهای نور مرئی تبدیل می شود، منتها نور مرئی تولیدی توسط صفحه ی فسفر ورودی بسیار ضعیف است و بایستی تقویت بشود، بنابراین در مرحله ی بعد این پرتوهای نورانی با یک لایه به نام فوتوکاتد که کاملاً به لایه ی فسفر ورودی متصل است برخورد می کنند و در اثر برخورد فوتونهای نورانی با فوتو کاتد، انرژی نورانی به الکترون تبدیل می شود، از طرفی، الکترون ها دارای بار منفی هستند، بنابراین بعد از تولید همدیگر را دفع می کنند، و ما برای اینکه این الکترونها را بر روی صفحه ی فسفر خروجی متمرکز کنیم، از عدسیهای کانونی کننده استفاده میکنیم، که این عدسی ها از طریق یک میدان الکتریکی، الکترونها را بر روی یک نقطه در گردن آند متمرکز می کنند، قسمت سوم لامپ تقویت کننده ی تصویر هم آند شتاب دهنده است، و چون آند شتابدهنده حدود 25 تا 30 کیلو ولت نسبت به فوتوکاتد پتانسیل مثبت دارد، الکترونها در حین حرکت از فوتوکاتد به سمت آند، شتاب می گیرند و نهایتاً بعد از برخورد با قسمت چهارم لامپ تقویت کننده ی تصویر یعنی صفحه ی فسفر خروجی، این جریان الکترونی به فوتون های نورانی تبدیل می شود، و یک تصویر معکوس بر روی صفحه ی فسفر خروجی تشکیل میدهد، حال اگه در پشت فسفر خروجی یک دوربین عکاسی قرار بدهیم، که از نور مرئی تولیدی بصورت پشت سر هم عکس بگیرد، در این صورت، از حرکت اجزای بافت یک فیلم ساخته می شود، که از قابلیت ضبط و ذخیره برخوردار است.
نهایتاً نکته ای که در مورد image intensifier وجود دارد آن است که در حرکت الکترونها از فوتوکاتد به سمت آند، جریان الکترونی حدود 50 برابر تقویت می شود، که به آن بهره ی جریان میگوییم، به این معنا که به ازای هر فوتون نوری در صفحه ی ورودی، 50 فوتون نوری از صفحه ی خروجی تابش می شود، وبه این ترتیب روشنایی تصویر فلوروسکپی با ضریب 50 افزایش پیدا می کند. از طرف دیگر نسبت ابعاد صفحه ی ورودی به صفحه ی خروجی معمولا 10 به 1 می باشد، و این یعنی روشنایی تصویر خروجی به خاطر کاهشی که در اندازه ی تصویر اتفاق می افتد، 100 برابر افزایش پیدا میکند. بنابراین با توجه به اینکه بهره ی جریان 50 و بهره ی کوچک نمایی 100 داریم، روشنایی تصویر خروجی در این مثال 5000 برابر تقویت میشود، که به این عدد بهره ی روشنایی گفته میشود و از حاصلضرب بهره ی جریان در بهره ی کوچک نمایی قابل محاسبه است.
بهره کوچک نمایی* بهره جریان = بهره روشنایی
به این ترتیب image intensifier ها علاوه بر کاهش دُز بیمار، موجب افزایش کیفیت تصاویر فلوروسکپی شده و امکان ذخیره سازی ، بررسی و همچنین دستکاری تصاویر فلوروسکپی را هم بوجود می آورد.
مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
محدود کننده وسیله ای است که به محفظه ی تیوب اشعه ی ایکس متصل می شود و اندازه و شکل بیم اشعه ی ایکس را تنظیم می کند، محدود کننده ها به سه گروه، سوراخ – شکاف – دیافراگم ، مخروطی ها و استوانه ای ها و کلیماتورها تقسیم بندی می شوند، که در بین آنها کلیماتورها بهترین نوع محدود کننده ها می باشند، به این دلیل که اولاً توسط آنها میتوانیم میدانهای با ابعاد مختلف را بسازیم و ثانیاً در کلیماتورها میدان پرتو توسط یک دسته پرتو نورانی، قبل از تابش دهی به بیمار قابل ملاحظه می باشد. کلیماتورها شامل دو دسته دریچه می باشند و هر دریچه شامل چهار صفحه ی سربی است که بصورت زوج های مستقل از هم حرکت می کنند و به این ترتیب ابعاد میدان اشعه ی ایکس با تغییر ابعاد دریچه ها قابل تنظیم می باشد. مهمترین وظیفه ی محدود کننده ها حفاظت بیمار در برابر پرتوهای غیر ضروری است. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبدر برخورد فوتو الکتریک یک فوتون با انرژی hf با یکی از الکترونهای لایه های داخلی اتم برخورد کرده و همه ی انرژی خودش را به الکترون میدهد، به این ترتیب فوتون از بین رفته و الکترون شروع به حرکت در درون ماده مینماید. به این برخورد، برخورد فوتوالکتریک می گویند، و به الکترونهایی که در اثر این برخورد از اتم خارج می شوند فوتوالکترون گفته می شود. انرژی جنبشی فوتوالکترونها از رابطه ی Ek=hf-Eb قابل محاسبه می باشد، که در آن Ek انرژی جنبشی فوتوالکترون، hf انرژی فوتون اولیه و Eb انرژی بستگی الکترون به هسته ی اتم می باشد. در پدیده ی فوتوالکتریک جای خالی الکترون بلافاصله توسط یکی از الکترون های لایه های بالاتر پر می شود و به این ترتیب یک یا چند فوتون ایکس اختصاصی از اتم تابش می شود. بنابراین در نتیجه ی پدیده ی فوتوالکتریک، یک فوتوالکترون، یک یون مثبت و یک پرتو ایکس اختصاصی تولید می گردد. بیشترین احتمال وقوع پدیده ی فوتوالکتریک زمانی می باشد که انرژی فوتون اندکی بیش از انرژی بستگی الکترون در لایه ی مربوطه باشد، در این حالت همه ی الکترونهای آن لایه ی الکترونی در معرض پدیده ی فوتوالکتریک قرار می گیرند، منتها با افزایش انرژی فوتون، احتمال پدیده ی فوتوالکتریک کاهش پیدا می کند، زیرا با افزایش انرژی، فوتونها بدون برخورد با الکترونهای آن لایه ی اتمی می توانند به لایه های درونی تر اتم نفوذ کنند و به این ترتیب احتمال برخورد فوتوالکتریک با آن لایه ی الکترونی از بین رفته و در نتیجه احتمال کلی وقوع پدیده ی فوتوالکترونیک کاهش پیدا می کند. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبفیلتراسیون ذاتی به حذف پرتوهای ایکس کم انرژی توسط محفظه ی لامپ اشعه ی ایکس، عایق روغنی اطراف لامپ و پنجره ی لامپ اشعه ی ایکس اشاره دارد و معمولاً جنس پنجره ی تیوب اشعه ی ایکس با توجه به جنس بافت مورد تصویربرداری انتخاب میشود، به عنوان مثال در دستگاه های ماموگرافی جنس پنجره ی لامپ اشعه ی ایکس به جای شیشه از برلیوم با عدد اتمی 4 ساخته می شود، تا به این ترتیب با توجه به پایین بودن انرژی پرتوهای ایکس مورد استفاده، پنجره ی تیوب جذب اشعه ی بالایی نداشته باشد. فیلتراسیون اضافی نیز به معنای قرار دادن یک ماده ی جاذب در مسیر بیم اشعه ی ایکس می باشد تا به این ترتیب فوتونهای کم انرژی توسط فیلتر اضافی جذب شده و تنها فوتونهای پر انرژی بتوانند عبور کنند، به این منظور معمولاً از فیلترهای آلومینیوم یا مس استفاده می شود، البته فیلترهای مرکبی نیز وجود دارند که شامل دو یا چند لایه از فلزات مختلف می باشند، و در آنها فلز با عدد اتمی بالا در طرف لامپ و فلز با عدد اتمی پایین تر در طرف بیمار قرار میگیرد تا به این ترتیب پرتوهای ایکس اختصاصی تولید شده در فیلتر با عدد اتمی بالا توسط فیلتر با عدد اتمی پایین جذب شده و از رسیدن آنها به بیمار و در نتیجه افزایش دُز بیمار جلوگیری شود. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلباولین عاملی که باعث می شود بافتهای مختلف، میزان جذب پرتوهای ایکس متفاوت و به عبارتی جذب افتراقی(differential Absorption) داشته باشند، انرژی پرتوهای ایکس است، یعنی هر چه انرژی پرتوهای ایکس یا به عبارتی kvp دستگاه اشعه ی ایکس کمتر باشد، جذب افتراقی بیشتری داریم و بافتها را به صورت مجزای از هم می بینیم، منتها کاهش انرژی باعث افزایش دُز بیمار می شود، بنابراین در انتخاب kvp ی مناسب باید دقت کنیم، عامل دوم، عدد اتمی بافت های مختلف است و چون احتمال پدیده ی فوتوالکتریک با توان سوم عدد اتمی رابطه ی مستقیم دارد، بنابراین هر چه عدد اتمی عناصر موجود در یک بافت در مقایسه با بافتهای اطراف بیشتر باشد، جذب افتراقی هم افزایش پیدا می کند، عامل دیگری که در جذب افتراقی اهمیت دارد چگالی بافت است، به این معنا که گاهی ممکن است عدد اتمی موثر دو بافت با هم برابر باشد اما چگالی یک بافت مثلاً دو برابر چگالی بافت دوم باشد، در این شرایط جذب افتراقی بافتی که چگالی بالاتری دارد، به اندازه ی 2 برابر بیشتر از بافت با چگالی پایین تر است، دلیل اهمیت جذب افتراقی هم آن است که جذب افتراقی باعث ایجاد تفاوت در شدت پرتوهای خروجی از بدن بیمار می شود، و این تفاوت امکان تمایز و تشخیص دو بافت مجاور هم را فراهم می کند، که به آن کنتراست تشعشع گفته می شود، و هر چه این کنتراست بیشتر باشد، تصویر رادیوگرافی که نهایتاً بدست می آید از کیفیت بالاتری برخودار است. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلب
پاسخ به نظر