اثرات پرتوهای یونیزان معمولاً به دو دسته ی اثرات قطعی یا Deterministic effect و اثرات احتمالی یاstochastic effect تقسیم بندی می شود، اثرات احتمالی اثراتی هستند که احتمال وقوع آنها قطعی نیست منتها با یک احتمال مشخص همراه می باشد و در آن احتمال وقوع اثر با افزایش دُز افزایش پیدا میکند، بنابراین اثرات احتمالی بدون آستانه هستند، یعنی دوز صفر بی خطر می باشد، منتها هر چه از دوز صفر بالاتر برویم، احتمال اثرات بیولوژیکی افزایش پیدا میکند، به عنوان مثال مخاطرات ناشی از تصویر برداری تشخیصی به استثناء تابش گیری جنین در رحم مادر جزو اثرات تصادفی پرتو محسوب میشوند، سرطانها به غیر از سرطان پوست و لوسمی هم جزو اثرات احتمالی پرتو هستند و علاوه بر اینها اثرات ژنتیکی که در اثر ایجاد اختلال در سیستم ژنتیکی یا همان موتاسیون ژنتیکی اتفاق می افتند و ممکن است در نسل بعدی یا چندین نسل بعد ظاهر بشوند نیز جزو اثرات احتمالی پرتو هستند.
در طرف مقابل اثرات قطعی اثراتی هستند که بدون شک در یک فرد در اثر پرتوگیری رخ می دهند، و این آثار بر خلاف آثار قبلی، دارای آستانه هستند، به این صورت که اگر دوز، کمتر از حد آستانه باشد، احتمال ایجاد یک اثر مشخص، صفر است، منتها اگر دز از حد آستانه بیش تر بشود، شدت بروز اثر هم افزایش پیدا میکند. به عنوان مثال کاتاراکت، سرخی پوست و عقیمی جزو اثرات قطعی پرتو محسوب میشوند. به این نکته هم دقت کنید که میزان دوز آستانه در اثرات قطعی بالا است و در مقادیر کم تر از دوز آستانه، احتمال بروز اثر صفر می باشد، بنابراین اگر مثلا یک فردی به تعداد زیاد رادیوگرافی انجام بدهد، احتمال عقیم شدن برای آن فرد صفر است، منتها در فلوروسکوپی های طولانی یا رادیوتراپی، که دز از حد آستانه بیشتر میشود، احتمال بروز اثرات قطعی مثل عقیمی و یا ریزش مو وجود دارد.
مدفیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
CT مخفف Computed Tomography می باشد و Computed Tomography به معنای نمایش یک برش یا Slice از یک جسم بصورت کامپیوتری است، به این معنا که در روش CT ما به جای تصاویر آناتومیکی که در رادیولوژی داشتیم، یک سری تصویر مقطعی داریم، که این تصاویر مقطعی به این صورت ساخته می شوند که فوتونها از یک مقطع نازک از بدن که به آن مقطع توموگرافی یا اسلایس گفته می شود، عبور میکنند و بوسیله ی آشکارسازها شمارش می شوند، در مرحله ی بعد فوتونهای شمارش شده برای آنالیز ریاضی به کامپیوتر منتقل شده و بعد از آنالیز اطلاعات توسط کامپیوتر، یک تصویر ساخته می شود که به آن تصویر CT گفته میشود. بنابراین بطور خلاصه، به تصویربرداری از اعضای داخلی بدن در مقاطع یا برش های عرضی، CT گفته می شود. نحوه ی عملکرد تیوب اشعه ی ایکس در دستگاه CT نیز مشابه دستگاههای رادیولوژی می باشد، با این تفاوت که برخلاف دستگاه های رادیولوژی که در آن ولتاژهای حدود 35 تا 150 کیلوالکترون ولت را داشتیم، در دستگاههای سی تی فقط 3 یا 4 انرژی مختلف داریم، به عنوان مثال در بعضی از دستگاههای CT فقط ولتاژهای 80 ، 100، 120 و 140 کیلوالکترون ولت را داریم و در بعضی از دستگاهها هم فقط ولتاژهای 80 ، 110 و 130 کیلوالکترون ولت در دسترس هستند، که ولتاژ 80 معمولاً برای تصویربرداری CT از کودکان استفاده می شود و ولتاژهای 100 به بالا برای تصویربرداری CT از بزرگسالان. از طرف دیگر در دستگاه های CT برخلاف دستگاه های رادیولوژی که آشکارساز، فیلم و صفحه بود، از آشکارسازهای Active که معمولاً از جنس سنتیلاسیون هستند استفاده می شود، به این صورت که وقتی فوتونهای عبوری از بدن بیمار با آشکارسازهای سنتیلاسیون برخورد می کنند، ازآشکارساز نور مرئی ساطع می شود و این نور برای ساخت تصویر سی تی تقویت شده و مورد استفاده قرار میگیرد. در بعضی از دستگاه های CT هم از آشکارسازهای اتاقک یونیزاسیون استفاده میشود، به این صورت که پرتوهای ایکس در اثر برخورد با گاز درون اتاقک باعث یونیزه شدن اتمهای گاز می شوند و در مرحله ی بعد با جمع آوری این یونهای مثبت و منفی، یک پالس الکتریکی تولید می شود، که می توانیم از آن برای ساخت تصویر استفاده کنیم. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبدر برخورد فوتو الکتریک یک فوتون با انرژی hf با یکی از الکترونهای لایه های داخلی اتم برخورد کرده و همه ی انرژی خودش را به الکترون میدهد، به این ترتیب فوتون از بین رفته و الکترون شروع به حرکت در درون ماده مینماید. به این برخورد، برخورد فوتوالکتریک می گویند، و به الکترونهایی که در اثر این برخورد از اتم خارج می شوند فوتوالکترون گفته می شود. انرژی جنبشی فوتوالکترونها از رابطه ی Ek=hf-Eb قابل محاسبه می باشد، که در آن Ek انرژی جنبشی فوتوالکترون، hf انرژی فوتون اولیه و Eb انرژی بستگی الکترون به هسته ی اتم می باشد. در پدیده ی فوتوالکتریک جای خالی الکترون بلافاصله توسط یکی از الکترون های لایه های بالاتر پر می شود و به این ترتیب یک یا چند فوتون ایکس اختصاصی از اتم تابش می شود. بنابراین در نتیجه ی پدیده ی فوتوالکتریک، یک فوتوالکترون، یک یون مثبت و یک پرتو ایکس اختصاصی تولید می گردد. بیشترین احتمال وقوع پدیده ی فوتوالکتریک زمانی می باشد که انرژی فوتون اندکی بیش از انرژی بستگی الکترون در لایه ی مربوطه باشد، در این حالت همه ی الکترونهای آن لایه ی الکترونی در معرض پدیده ی فوتوالکتریک قرار می گیرند، منتها با افزایش انرژی فوتون، احتمال پدیده ی فوتوالکتریک کاهش پیدا می کند، زیرا با افزایش انرژی، فوتونها بدون برخورد با الکترونهای آن لایه ی اتمی می توانند به لایه های درونی تر اتم نفوذ کنند و به این ترتیب احتمال برخورد فوتوالکتریک با آن لایه ی الکترونی از بین رفته و در نتیجه احتمال کلی وقوع پدیده ی فوتوالکترونیک کاهش پیدا می کند. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبدستگاه های CT براساس هندسه ی اسکن، حرکت اسکن و تعداد آشکارسازهای مورد استفاده در 4 نسل مختلف دسته بندی می شوند، به این صورت که دستگاه های CT نسل اول که برای اولین بار توسط هانسفید ساخته شده و مورد استفاده قرار گرفتند، از یک بیم اشعه ی ایکس مدادی شکل برای تصویر برداری استفاده می کردند، به این صورت که پرتوهای ایکس تولیدی توسط تیوب اشعه ی ایکس به شدت کالیمه می شدند، بطوریکه ما فقط یک Ray یا پرتوی ایکس در خروجی داشتیم، و این شعاع پرتو ایکس در مقابل یک آشکارساز قرار می گرفت، در مرحله ی بعد این شعاع پرتو ایکس و آشکارساز به طور همزمان در عرض بدن بیمار حرکت می کردند و پرتوهای عبوری از بدن بیمار توسط آشکارساز انداره گیری می شد، بعد از این حرکت که به آن حرکت انتقالی یا Translate گفته می شود، تیوب و آشکارساز به اندازه ی یک درجه می چرخیدند و مجدداً حرکت انتقالی جدیدی را انجام می دادند، این پروسه آنقدر تکرار میشد تا از زوایای مختلف بدن یا به عبارت دیگر از View های مختلف بدن کار جمع آوری اطلاعات انجام بشود. نهایتاً به این نسل از دستگاه های CT با توجه پرتو ایکس مدادی شکلی که استفاده می کنند و ژئومتری یا همان هندسه ی دریافت اطلاعاتی که دارند اصطلاحاً دستگاههای سی تی انتقالی/چرخشی با بیم مدادی شکل یا Rotate /Translate Pencil Beam گفته می شود، منتها عیب بسیار بزرگ این نسل از دستگاههای سی تی، زمان بسیار زیاد آنها برای تصویربرداری بود، بطوریکه برای تصویربرداری از هر اسلایس به زمانی در حدود 6 تا 7 دقیقه نیاز بود و این زمان زیاد باعث رنجش بیمار می شد. برای رفع این محدودیت و کاهش زمان تصویربرداری دستگاه های CT نسل دوم ساخته شدند، که در این دستگاه ها هم مثل دستگاه های نسل اول از حرکات انتقالی- چرخشی استفاده می شد، منتها به جای یک آشکارساز که در نسل اول داشتیم، در نسل دوم از حدود 30 آشکارساز استفاده کردند، یعنی در نسل دوم یک ردیف آشکارساز خطی داشتیم که در مقابل تیوب اشعه ی ایکس قرار داشتند و با تیوب کوپل شده بودند. تفاوت دیگر نسل دوم با نسل اول این بود که در این نسل از ژئومتری یا هندسه ی بیم بادبزنی شکل یا Fan Beam استفاده شد، یعنی برخلاف نسل اول که شعاع پرتوهای ایکس موازی هم بودند، در نسل دوم هندسه ی شعاع پرتوها به شکل یک بادبزن یا Fan کوچک بود که راس بادبزن از تیوب اشعه ی ایکس شروع می شد و پرتوها با حرکت به سمت آشکارسازها از هم واگرا می شدند و به یک ردیف آشکارساز برخورد می کردند. به این ترتیب در سی تی نسل دوم اگر مثلاً 30 تا آشکارساز داشتیم، با هر بار تابش دهی اطلاعات در 30 راستا توسط 30 پرتو بدست می آمد، که این را معادل 30 درجه قرار می دادند و بعد از اینکه حرکت انتقالی تکمیل می شد به جای اینکه دستگاه برای انجام حرکت انتقالی بعدی یک درجه چرخش انجام بدهد، 30 درجه می چرخید. به این ترتیب در نسل دوم با افزایش تعداد آشکارسازها و همچنین افزایش زاویه های چرخش زمان اسکن کاهش پیدا کرد، بطوریکه برای اسکن یک مقطع با توجه به تعداد آشکارسازها و زاویه های چرخش به زمانی بین 20 ثانیه تا 5/3 دقیقه نیاز بود. به نسل دوم دستگاه های CT اصطلاحاً انتقالی- چرخشی با بیم بادبزنی باریک یا Rotate / Translate Narrow Fan Beam گفته می شود. نسل سوم دستگاههای سی تی هم اصطلاحا به چرخشی-چرخشی با بیم پهن یا Rotate / Rotate Wide Fan Beam معروف هستند، که در آنها زاویه ی دسته پرتو ایکسی که به بدن بیمار می رسد، بین 30 تا 40 درجه است و همه ی حجم مورد تصویربرداری را در بر می گیرد، به این صورت که سیستم تیوب اشعه ی ایکس و آشکارساز با هم به طور همزمان یک حرکت چرخشی به اندازه ی 180 یا 360 درجه انجام می دهند و اطلاعات مربوط به یک مقطع را جمع آوری می کنند، در این نسل با توجه به افزایش زاویه ی بیم بادبزنی، تعداد آشکارسازهای مورد استفاده هم افزایش پیدا کرد، بطوریکه کمپانی های مختلف از حدود 288 تا 1024 آشکارساز را برای ساخت این نسل از دستگاه های CT مورد استفاده قرار دادند. در نسل سوم با توجه به اینکه حرکت انتقالی یا Translate حذف شد، زمان اسکن به کمتر از 10 ثانیه به ازای هر اسلایس رسید و این کاهش زمان باعث افزایش عملکرد بیمار و کاهش آرتیفکت حرکتی در تصاویر CT شد. در نسل چهارم دستگاه های CT که به آن اصطلاحاً Rotate/Stationary گفته می شود، حدود 4000 آشکارساز را بر روی یک دایره ی کامل در اطراف گانتری قرار دادند، و تیوب اشعه ی ایکس بر روی یک رینگ ثابت به دور بدن بیمار می چرخید، به این ترتیب در نسل چهارم دستگاههای سی تی، شعاع پرتو بادبزنی در داخل یک حلقه ی ثابت از آشکارسازها در حال چرخش است، نهایتا مهمترین مزیت سی تی نسل چهارم علاوه بر کاهش زمان اسکن به حدود یک ثانیه آن است که در آن آرتیفکتی به نام Ring Artifact که در نسل سوم داشتیم وجود ندارد. اما نکته ای که در مورد دستگاه های نسل یک تا چهار وجود دارد آن است که در همه ی این نسلها، حرکت تخت بصورت Scan And Step است، یعنی تصویر یک اسلایس گرفته می شود، و بعد از آن برای تصویربرداری از اسلایس بعدی تخت یک مقدار به جلو حرکت میکند و در موقعیت جدید برای تصویربرداری از اسلایس بعدی متوقف می شود، به این ترتیب برای همه ی اسلایسها این حرکت و توقف تخت انجام می شود. منتها در دستگاه های سی تی اسپایرال که به آن سی تی هلیکال هم گفته می شود، همزمان با شروع تابش پرتو از تیوب اشعه ی ایکس، تخت با سرعت یکنواخت شروع به حرکت می کند و دریافت اطلاعات در حین حرکت تخت انجام می شود، بنابراین در CT اسپایرال، زمانی که برای حرکت تخت بیمار از یک برش به برش دیگر در نسلهای قبلی مورد نیاز بود، را نداریم و در نتیجه زمان تصویربرداری کاهش پیدا می کند. علاوه بر این در نسلهای قبل اطلاعات به صورت گسسته و اسلایس به اسلایس بدست می آمدند و در نتیجه اطلاعات بین دو اسلایس را از دست میدادیم، مگر اینکه دو اسلایس در کنار هم قرار میگرفتند، که در این شرایط هم زمان تصویربرداری و هم دز بیمار افزایش پیدا می کردند، منتها در CT اسپایرال، اطلاعات به جای یک مقطع از یک حجم از بدن بیمار و به صورت پیوسته بدست می آید، و به این ترتیب هم دز بیمار کاهش پیدا می کند و هم زمان تصویربرداری کم می شود. نهایتا در سی تی اسپایرال دو عامل خصوصیات تصویر CT را کنترل می کند، اولین عامل ضخامت برش است که بر کیفیت، وضوح و همچنین میزان نویز تصویر تأثیر می گذارد، به این صورت که هر چه ضخامت اسلایس یا همان پهنای بیم اشعه ی ایکس افزایش پیدا کند، نویز تصویر کاهش پیدا می کند، اما قدرت تفکیک یا همان رزولوشن تصویر CT هم کم می شود، عامل دوم هم سرعت حرکت تخت است، که سرعت حرکت تخت تابعی از ضخامت برش است، و اینها با عاملی به نام گام با هم در ارتباطند. اگر ضخامت برش را ثابت در نظر بگیریم، گام های بزرگتر به معنای آن است که در طی یک دور چرخش گانتری به دور بدن بیمار، تخت مسافت بیشتری را طی کرده و در نتیجه حجم اطلاعات دریافتی کاهش پیدا کرده است، که این کاهش اطلاعات بر روی بازسازی تصویر اثر منفی می گذارد، بنابراین حداکثر گامی که معمولا استفاده میشود حدود 1.5 است، تا به این ترتیب کیفیت تصاویر دریافتی در حد مطلوبی باقی بماند، اگه مقدار گام برابر یک باشد، به این معنا است که چرخش ها دقیقا در کنار هم انجام شده اند. مزیت مهم CT اسپایرال کاهش زمان تصویربرداری و دز بیمار است، بطوریکه توسط آن می توانیم حتی از بافت های متحرک مثل قلب و ریه هم تصویر داشته باشیم. نهایتا نوع دیگری از دستگاه های CT که معرفی شدند، دستگاه های Multi Slice هستند، که تفاوت آنها با CT اسپایرال در این است که در سی تی اسپایرال فقط یک ردیف آشکارساز در کنار هم داریم، در حالی که در اینجا چندین ردیف آشکارساز در کنار هم قرار می گیرند، مثلاً در دستگاه های 16 اسلایسی، 16 ردیف دتکتور در کنار هم قرار گرفته اند، بنابراین بر خلاف نسلهای قبل که ضخامت اسلایسها تعیین کننده ی رزولوشن یا همان قدرت تفکیک تصاویر سی تی بود، در این نسل ضخامت دتکتورها تعیین کننده ی رزولوشن تصاویر است، مثلاً اگر ضخامت هر ردیف آشکارساز 0.5 سانتی متر باشد و دستگاه CT ی ما 16 اسلایس باشد، دیگر نیاز نیست 16 تا اسلایس 0.5 سانتی متری در کنار هم بزنیم. بلکه به جای آن اسلایس ها را 8 سانتی متر به 8 سانتی متر می زنیم، و به این ترتیب زمان تصویربرداری با حفظ رزولوشن تصویر، بطور قابل ملاحظه ای کاهش پیدا می کند. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبپرتوهای اشعه ایکس در مسیر حرکت خود یا بدون هیچ برخوردی از بدن بیمار عبور می کنند، یا توسط بدن بیمار جذب می شوند و یا از مسیر اولیه ی خود در جهات مختلف پراکنده می شوند. پرتوهایی که توسط بدن بیمار جذب می شوند و پرتوهایی که بدون هیچ برخوردی از بدن بیمار عبور می کنند برای ما تصویر واضحی از بافتهای مختلف می سازند، منتها پرتوهایی که از مسیر حرکت خودشان منحرف می شوند (پراکنده می شوند)، حامل اطلاعات تشخیصی نبوده و نویز محسوب می گردند، و اگر این پرتوهای پراکنده شده به فیلم رادیوگرافی برسند موجب محوشدن تصویر رادیوگرافی و کاهش کنتراست فیلم رادیوگرافی می گردند. به همین دلیل برای آنکه از رسیدن این پرتوهای پراکنده به سطح فیلم رادیوگرافی یا صفحه ی فلوروسکپی جلوگیری شود، از راه های متفاوتی استفاده می شود، یکی از این راه ها کاهش اندازه ی میدان اشعه ایکس بوسیله ی کلیماتور می باشد تا به این ترتیب پرتوهای پراکنده ی کمتری تولید گردد، راه دوم استفاده ی از kvp های کوچیکتر می باشد تا به این ترتیب فوتونهای اشعه ی ایکس انرژی کمتری داشته باشند و در نتیجه پرتوهای پراکنده شده انرژی کافی برای رسیدن به فیلم رادیوگرافی را نداشته باشند. راه سوم استفاده ار باند کمپرسی برای کاهش ضخامت بافتی می باشد که در میدان اشعه ی ایکس قرار می گیرد تا به این صورت با کاهش ضخامت بافت احتمال پراکندگی پرتوها نیز کاهش پیدا کند، راه چهارم افزایش فاصله ی بین بافت بدن و فیلم است تا به این ترتیب پرتوهای پراکنده شده ی کمتری به فیلم برسند و مه آلودگی فیلم کاهش پیدا کند، نهایتاً کاربردی ترین روشی که برای کاهش پرتوهای پراکنده شده مورد استفاده قرار می گیرد استفاده ی از گرید می باشد، به این صورت که گرید از تعداد زیادی نوارهای سربی موازی ساخته شده که این نوارهای سربی توسط یک ماده ی شفاف به اشعه ی ایکس مثل کربن، آلومینیم یا پلاستیک از هم جدا شده اند، و وقتی که گرید بین بیمار و کاست رادیوگرافی قرار می گیرد، به علت همراستا بودن شکافت های گرید با منبع تولید پرتوهای ایکس، فوتونهای اشعه ایکسی که بدون هیچ برخوردی از بدن بیمار عبور می کنند، شانس بیشتری برای عبور از فضای بین تیغه ها دارند، در حالیکه پرتوهای پراکنده شده به احتمال زیاد با تیغه های گرید برخورد کرده و حذف می شوند، به این ترتیب پرتوهای پراکنده شده ی کمتری به فیلم می رسد، نویز تصویر رادیوگرافی کاهش پیدا می کند، و در نتیجه کنتراست تصویر رادیوگرافی افزایش می یابد. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلب
پاسخ به نظر