ارشد_فیزیک_پزشکی

ساختار فیلم رادیوگرافی به چه صورت است؟

ساختار فیلم رادیوگرافی به چه صورت است؟

فیلم رادیوگرافی در بین دو صفحه ی تشدید کننده قرار می گیرد و ساختار آن مشابه فیلم های عکاسی می باشد، یعنی از یک پایه تشکیل شده که در دو طرف آن دو لایه ی امولسیون داریم، به این صورت که پایه ی فیلم یک لایه ی نسبتاً ضخیم و شفاف از جنس استات سلولز یا پلی استر می باشد که معمولاً در هنگام ساخت به آن یک رنگ آبی نیز اضافه می شود، تا به این ترتیب تصویر رادیولوژی بهتر دیده شده و چشم پزشک خسته نشود. وظیفه ی اصلی پایه ی فیلم نیز ایجاد یک تکیه گاه برای لایه ی امولسیون می باشد، منتها علاوه بر این پایه ی فیلم نیز باید از ضخامت و استحکام کافی برخوردار باشد و شکل و اندازه ی آن در طول فرآیند ظهور و ثبوت و همچنین در دوران بایگانی فیلم بدون تغییر باقی بماند، همچنین پایه ی فیلم بایستی نسبت به نور مرئی شفاف باشد تا بعد از تشکیل تصویر بر روی فیلم، اثر یا طرح قابل مشاهده ای از پایه در تصویر دیده نشود. در دو طرف پایه ی فیلم یک لایه ی بسیار نازک ژلاتینی داریم که وظیفه آن اتصال پایه ی فیلم به لایه های امولسیون می باشد. امولسیون هم یک ماده ی ژلاتینی است که در آن کریستال های برومور نقره بصورت یکنواخت و معلق پخش شده اند، بطوریکه وقتی پرتوهای ایکس یا نور مرئی به این کریستالهای برمور نقره برخورد می کنند باعث یونیزه شدن کریستال به یونهای نقره ی مثبت یک و برومور منفی یک می شوند. نهایتاً بعد از اینکه فرایند ظهور و ثبوت فیلم انجام می شود، در محل هایی که برخورد پرتوهای ایکس یا نور مرئی با فیلم را داشته ایم فیلم به رنگ سیاه درمی آید، و در محل هایی که برخورد پرتوها با شدت کمتری انجام شده است، فیلم به رنگ سفید دیده می شود. ضخامت امولسیون نیز معمولا از یک و نیم میلیمتر کمتر می باشد منتها بر اساس نوع فیلم این ضخامت می تواند متفاوت باشد، نهایتاً وظیفه ی ژلاتین در امولسیون آن است که اولاً کریستالهای برمور نقره را در درون امولسیون به صورت پخش نگه دارد و از چسبیدن آنها به همدیگر جلوگیری کند و ثانیا باعث می شود که محلول ظهور و ثبوت به راحتی به داخل امولسیون نفوذ کند. نهایتا بعد از امولسیون یک روکش حفاظتی از ژلاتین شفاف داریم که وظیفه آن محافظت از امولسیون در برابر صدمات مکانیکی مثل فشار، خراش و اصطکاک می باشد.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
آیا صفحات تشدید کننده ی سریعتر موجب کاهش دز بیمار می گردند؟

آیا صفحات تشدید کننده ی سریعتر موجب کاهش دز بیمار می گردند؟

اگر چه صفحات سریعتر که فاکتور تشدید کنندگی بالاتری نیز دارند، پرتوگیری بیمار را کاهش می دهند، منتها سرعت زیاد صفحه به معنای ثبت جزئیات کمتر نیز می باشد، زیرا صفحات سریعتر یا ضخامت لایه ی فسفر آنها بیشتر است، یا بازده تبدیل اشعه به نور بالاتری دارند، و یا از ضریب جذب لایه ی فسفر بالاتری برخوردارند، که همه ی این موارد باعث پراکندگی بیشتر نور مرئی و در نتیجه کاهش تیزی مرزها و لبه های تصویر و نهایتا کاهش وضوح تصویر می گردد. دقت کنید که وضوح یا رزولوشن تصویر به معنای حداکثر جفت خطی است که در هر میلیمتر توسط سیستم فیلم و صفحه قابل تفکیک می باشد، مثلاً اگر در هر میلیمتر 4 تا خط- فاصله را بتوانیم ببینیم باالتبع رزولوشن بالاتری نسبت به حالتی داریم که 2 تا خط- فاصله را در هر میلیمتر می ببینیم.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
ساختار صفحات تشدید کننده به چه صورت است؟

ساختار صفحات تشدید کننده به چه صورت است؟

هدف از استفاده ی از صفحات تشدید کننده کاهش دُز بیمار همراه با تابش مناسب به فیلم رادیوگرافی می باشد، به این صورت که صفحات تشدید کننده از 4 لایه ساخته می شوند، لایه ی اول پایه ی صفحه ی تشدید کننده از جنس پلاستیک می باشد، لایه ی دوم لایه ی منعکس کننده ی نور مرئی است که وظیفه دارد  پرتوهای نورانی که به سمت پایه ی صفحه ی تشدید کننده حرکت می کنند را به سمت فیلم رادیوگرافی منکعس کند، لایه سوم یک لایه ی فسفری می باشد، که یک محیط پلاستیکی است که در آن کریستال های فسفر مثل تنگستات کلسیم به صورت معلق قرار گرفته اند و این کریستالهای فسفر علاوه بر اینکه عدد اتمی بالایی دارند دارای خاصیت فلورسانس نیز می باشند، یعنی در اثر جذب پرتوهای ایکس پرانرژی تعداد زیادی فوتون کم انرژی در محدوده ی نور مرئی تابش می کنند، و این فوتونهای نورانی وقتی با فیلم رادیوگرافی برخورد می کنند، در آن یک تصویر پنهان ایجاد می نمایند. دقت کنید که با افزایش ضخامت لایه ی فسفر، بازده و سرعت صفحه افزایش پیدا می کند زیرا احتمال برخورد پرتوهای ایکس با کریستالهای فسفر افزایش می یابد، منتها رزولوشن تصویر دریافتی با افزایش ضخامت لایه ی فسفر، کاهش می یابد زیرا پرتوهای نورانی تولید شده در صفحه ی تشدید کننده به محدوده ی بزرگتری از سطح فیلم تابش می شوند. نهایتا لایه ی چهارم صفحه ی تشدید کننده یک لایه ی محافظ می باشد، که این لایه ی محافظ اولاً به عنوان یک حفاظ فیزیکی برای لایه ی فسفر عمل می نماید، و ثانیاً یک سطحی ایجاد می کند که بتوانیم بدون صدمه به لایه ی فسفر، صفحه ی تشدیدکننده را تمیز کنیم.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
ساختار کاست رادیوگرافی به چه صورت است؟

ساختار کاست رادیوگرافی به چه صورت است؟

صفحه ی بالایی کاست رادیوگرافی معمولاً از یک ماده ی سبک شفاف به پرتوهای ایکس مانند پلاستیک ساخته می شود تا پرتوهای ایکس به راحتی بتوانند از آن عبور کنند، بعد از آن یک صفحه ی تشدید کننده قرار گرفته است و سپس فیلم رادیوگرافی را داریم، و پس از آن مجدداً یک صفحه ی تشدید کننده ی دیگر قرار گرفته است. ( به این ترتیب فیلم رادیوگرافی در بین دو صفحه ی تشدید کننده قرار می گیرد)  نهایتاً صفحه ی پشتی کاست را داریم که معمولاً از یک فلز با عدد اتمی بالا ساخته می شود تا پرتوهای ایکسی که بوسیله ی صفحات تشدید کننده و فیلم متوقف نشده اند را جذب کرده و از پراکندگی و بازگشت آنها به سمت فیلم رادیوگرافی جلوگیری نماید.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
استفاده از گرید چه تاثیری بر روی دز بیمار می گذارد؟

استفاده از گرید چه تاثیری بر روی دز بیمار می گذارد؟

استفاده ی از گرید باعث افزایش دُز بیمار می شود، به این دلیل که گرید بسیاری از پرتوهای ایکس را جذب می کند، در نتیجه برای آنکه به همان میزان سیاهی که در زمان عدم استفاده ی از گرید داشتیم، برسیم، بایستی عوامل تابش مثل mA یا زمان تابش دهی را افزایش بدهیم، که این موضوع به معنای افزایش دُز بیمار می باشد. از سوی دیگر یکی از مهمترین پارامترهای گرید که برای توصیف توانایی گرید در حذف پرتوهای پراکنده استفاده میشود، نسبت گرید می باشد که از تقسیم ارتفاع تیغه های گرید به فاصله ی بین تیغه ها بدست می آید یعنی ، به این ترتیب هر چه تیغه های گرید بلندتر و فاصله ی بین تیغه ها کمتر باشد، پرتوهای پراکنده ی بیشتری توسط گرید حذف می شود و در نتیجه بازده گرید بالاتر است، منتها باید دقت کنیم که افزایش نسبت گرید به معنای افزایش دُز بیمار می باشد.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
گرید چیست و به چه منظور مورد استفاده قرار می گیرد؟

گرید چیست و به چه منظور مورد استفاده قرار می گیرد؟

پرتوهای اشعه ایکس در مسیر حرکت خود یا بدون هیچ برخوردی از بدن بیمار عبور می کنند، یا توسط بدن بیمار جذب می شوند و یا از مسیر اولیه ی خود در جهات مختلف پراکنده می شوند. پرتوهایی که توسط بدن بیمار جذب می شوند و پرتوهایی که بدون هیچ برخوردی از بدن بیمار عبور می کنند برای ما تصویر واضحی از بافتهای مختلف می سازند، منتها پرتوهایی که از مسیر حرکت خودشان منحرف می شوند (پراکنده می شوند)، حامل اطلاعات تشخیصی نبوده و نویز محسوب می گردند، و اگر این پرتوهای پراکنده شده به فیلم رادیوگرافی برسند موجب محوشدن تصویر رادیوگرافی و کاهش کنتراست فیلم رادیوگرافی می گردند. به همین دلیل برای آنکه از رسیدن این پرتوهای پراکنده به سطح فیلم رادیوگرافی یا صفحه ی فلوروسکپی جلوگیری شود، از راه های متفاوتی استفاده می شود، یکی از این راه ها کاهش اندازه ی میدان اشعه ایکس بوسیله ی کلیماتور می باشد تا  به این ترتیب پرتوهای پراکنده ی کمتری تولید گردد، راه دوم استفاده ی از kvp های کوچیکتر می باشد تا به این ترتیب فوتونهای اشعه ی ایکس انرژی کمتری داشته باشند و در نتیجه پرتوهای پراکنده شده انرژی کافی برای رسیدن به فیلم رادیوگرافی را نداشته باشند. راه سوم استفاده ار باند کمپرسی برای کاهش ضخامت بافتی می باشد که در میدان اشعه ی ایکس قرار می گیرد تا به این صورت با کاهش ضخامت بافت احتمال پراکندگی پرتوها نیز کاهش پیدا کند، راه چهارم افزایش فاصله ی بین بافت بدن و فیلم است تا به این ترتیب پرتوهای پراکنده شده ی کمتری به فیلم برسند و مه آلودگی فیلم کاهش پیدا کند، نهایتاً کاربردی ترین روشی که برای کاهش پرتوهای پراکنده شده مورد استفاده قرار می گیرد استفاده ی از گرید می باشد، به این صورت که گرید از تعداد زیادی نوارهای سربی موازی ساخته شده که این نوارهای سربی توسط یک ماده ی شفاف به اشعه ی ایکس مثل کربن، آلومینیم یا پلاستیک از هم جدا شده اند، و وقتی که گرید بین بیمار و کاست رادیوگرافی قرار می گیرد، به علت همراستا بودن شکافت های گرید با منبع تولید پرتوهای ایکس، فوتونهای اشعه ایکسی که بدون هیچ برخوردی از بدن بیمار عبور می کنند، شانس بیشتری برای عبور از فضای بین تیغه ها دارند، در حالیکه پرتوهای پراکنده شده به احتمال زیاد با تیغه های گرید برخورد کرده و حذف می شوند، به این ترتیب پرتوهای پراکنده شده ی کمتری به فیلم می رسد، نویز تصویر رادیوگرافی کاهش پیدا می کند، و در نتیجه کنتراست تصویر رادیوگرافی افزایش می یابد.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
محدود کننده دستگاه رادیوگرافی چیست؟

محدود کننده دستگاه رادیوگرافی چیست؟

محدود کننده وسیله ای است که به محفظه ی تیوب اشعه ی ایکس متصل می شود و اندازه و شکل بیم اشعه ی ایکس را تنظیم می کند، محدود کننده ها به سه گروه، سوراخ – شکاف – دیافراگم ، مخروطی ها و استوانه ای ها و  کلیماتورها تقسیم بندی می شوند، که در بین آنها کلیماتورها بهترین نوع محدود کننده ها می باشند، به این دلیل که اولاً توسط آنها میتوانیم میدانهای با ابعاد مختلف را بسازیم و ثانیاً در کلیماتورها میدان پرتو توسط یک دسته پرتو نورانی، قبل از تابش دهی به بیمار قابل ملاحظه می باشد. کلیماتورها شامل دو دسته دریچه می باشند و هر دریچه شامل چهار صفحه ی سربی است که بصورت زوج های مستقل از هم حرکت می کنند و به این ترتیب ابعاد میدان اشعه ی ایکس با تغییر ابعاد دریچه ها قابل تنظیم می باشد. مهمترین وظیفه ی محدود کننده ها حفاظت بیمار در برابر پرتوهای غیر ضروری است.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
(HVL (Half Value Layer چیست؟

(HVL (Half Value Layer چیست؟

  مولفه ای که برای اندازه گیری غیر مستقیم کیفیت بیم اشعه ی ایکس مورد استفاده قرار می گیرد، ضخامت لایه نیم جذب یا HVL می باشد که بعنوان ضخامتی از ماده ی جاذب که شدت پرتوهای اشعه ی ایکس را به نصف مقدار اولیه کاهش می دهد تعریف می شود و باالتبع هر چه قدرت نفوذ پرتو بیشتر باشد، ضخامت لایه ی نیم جذب هم افزایش پیدا می کند، منتها با توجه به اینکه پرتوهای ایکس تولیدی توسط مولد اشعه ی ایکس تک انرژی نمی باشند، به همین دلیل این پرتوها با عبور از لایه های مختلف یک ماده سخت تر می شوند و انرژی متوسط دسته پرتوی ایکس افزایش پیدا می کند، و بیم اشعه ی ایکس سخت تر میشود و در نتیجه ضخامت لایه های نیم جذب افزایش پیدا میکند. نسبت  HVLاول به دوم توسط ضریب یکنواختی یا  Homogeneity coefficient نشان داده می شود،  که برابر HC=HVL1/HVL2  می باشد و میزان یکنواختی انرژی در بیم پرتوهای ایکس را نشان می دهد. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب