درس_فیزیک_پزشکی_مهندسی_پزشکیپ

رزولوشن یا قدرت تفکیک فضایی در التراسوند به چه معناست؟

رزولوشن یا قدرت تفکیک فضایی در التراسوند به چه معناست؟

  رزولوشن یا قدرت تفکیک فضایی، به توانایی سیستم برای ثبت جزئیات اشاره می کند، به این معنا که هرچه رزولوشن سیستم در تشخیص دو نقطه ی نزدیک به هم به عنوان نقاط جدا و متمایز بیشتر باشد، مرزهایی که به هم نزدیکتر هستند، در تصویر از یکدیگر قابلیت تفکیک و تشخیص بیشتری دارند، در سیستم های سونوگرافی به غیر از  M Mode , A Modeکه تکنیک های تصویر برداری یک بعدی هستند، بقیه ی تکنیک های تصویربرداری دو بعدی هستند و برای آنها دو نوع رزولوشن داریم. 1-رزولوشن محوری یا Axial Resolution و 2- روزلوشن جانبی یا Lateral Resolution. رزولوشن محوری یا طولی بیان می کند که دو جسم تا چه حد در راستای موازی با محور پرتو می توانند به هم نزدیک باشند تا دستگاه همچنان بتواند آنها را به صورت نقاط مجزای از هم تشخیص بدهد. تفکیک پذیری محوری به اندازه ی طول پالس وابسته است و بهترین تفکیک پذیری محوری زمانی اتفاق می افتد که فاصله ی دو نقطه ی مورد نظر برابر نصف طول پالس باشد، تا به این ترتیب پرتوهای بازتابش شده از دو جسم نه با همدیگر همپوشانی داشته باشند که دستگاه آنها را یک جسم تلقی کند و نه از همدیگر فاصله داشته باشند که کیفیت کاهش پیدا کند، بلکه دقیقاً پشت سر هم قرار بگیرند تا مرزها از همدیگر قابل افتراق باشند. نهایتا هر چه عدد تفکیک پذیری یک دستگاه کوچکتر باشد، توانایی آن دستگاه در تفکیک دو نقطه ی نزدیکتر بیشتر است. تفکیک پذیری جانبی به کوچکترین فاصله ی دو جسم در راستای عمود بر محور موج اشاره دارد، که دستگاه می تواند آن دو جسم را جدای از هم تلقی کند، به عبارت دیگر دو نقطه که در یک عمق مشابه از بدن قرار دارند را چقدر می توانیم به هم نزدیک کنیم در حالی که در تصویر به صورت دو نقطه ی متمایز دیده شوند. رزولوشن جانبی تحت تأثیر پهنای عرضی موج و عمق میدان می باشد، یعنی هرچه قطر باریکه ی فراصوتی در یک عمق مشخص کوچکتر باشد، در آن عمق مشخص رزولوشن جانبی بهتری داریم. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
رادیولوژی دیجیتال چیست؟

رادیولوژی دیجیتال چیست؟

به روشهایی که در آن به جای اسکرین- فیلم از سیستم های دیجیتال و مانیتورهای کامپیوتر برای نمایش تصاویر اشعه ی ایکس استفاده میشود، روشهای رادیولوژی دیجیتال گفته می شود. به این صورت که در روشهای دیجیتال به جای ثبت اطلاعات در ذرات برمورنقره، اطلاعات بر روی یک ماتریس دو بعدی از پیکسلها ثبت می شود، و هر پیکسل میانگین فوتونهایی که به آن وارد شده اند را به صورت یک عدد در خودش ذخیره می کند، تا در مرحله ی بعد این عدد، به صورت یک سطحی از طیف خاکستری در مانیتور نشان داده شود. بنابراین در سیستمهای دیجیتال، به جای اسکرین- فیلم یک آشکار ساز داریم، که این آشکار ساز فوتونهای اشعه ی ایکس را با کارایی بالا آشکار و ثبت میکند. به این ترتیب، ذخیره اطلاعات و تشکیل تصویر قابل رویت در دستگاه های دیجیتال به مراتب ساده تر و سریعتر از رادیوگرافی معمولی انجام می شود و امکان پردازش، انتقال اطلاعات، بازیابی سریع و فشرده سازی تصاویر هم وجود دارد، که همه ی این موارد باعث می شود کیفیت تصاویر دریافتی در سیستم های دیجیتال به مراتب بالاتر از رادیوگرافی اسکرین-فیلم باشد.

مشاهده مطلب
آیا صفحات تشدید کننده ی سریعتر موجب کاهش دز بیمار می گردند؟

آیا صفحات تشدید کننده ی سریعتر موجب کاهش دز بیمار می گردند؟

اگر چه صفحات سریعتر که فاکتور تشدید کنندگی بالاتری نیز دارند، پرتوگیری بیمار را کاهش می دهند، منتها سرعت زیاد صفحه به معنای ثبت جزئیات کمتر نیز می باشد، زیرا صفحات سریعتر یا ضخامت لایه ی فسفر آنها بیشتر است، یا بازده تبدیل اشعه به نور بالاتری دارند، و یا از ضریب جذب لایه ی فسفر بالاتری برخوردارند، که همه ی این موارد باعث پراکندگی بیشتر نور مرئی و در نتیجه کاهش تیزی مرزها و لبه های تصویر و نهایتا کاهش وضوح تصویر می گردد. دقت کنید که وضوح یا رزولوشن تصویر به معنای حداکثر جفت خطی است که در هر میلیمتر توسط سیستم فیلم و صفحه قابل تفکیک می باشد، مثلاً اگر در هر میلیمتر 4 تا خط- فاصله را بتوانیم ببینیم باالتبع رزولوشن بالاتری نسبت به حالتی داریم که 2 تا خط- فاصله را در هر میلیمتر می ببینیم.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
ساختار صفحات تشدید کننده به چه صورت است؟

ساختار صفحات تشدید کننده به چه صورت است؟

هدف از استفاده ی از صفحات تشدید کننده کاهش دُز بیمار همراه با تابش مناسب به فیلم رادیوگرافی می باشد، به این صورت که صفحات تشدید کننده از 4 لایه ساخته می شوند، لایه ی اول پایه ی صفحه ی تشدید کننده از جنس پلاستیک می باشد، لایه ی دوم لایه ی منعکس کننده ی نور مرئی است که وظیفه دارد  پرتوهای نورانی که به سمت پایه ی صفحه ی تشدید کننده حرکت می کنند را به سمت فیلم رادیوگرافی منکعس کند، لایه سوم یک لایه ی فسفری می باشد، که یک محیط پلاستیکی است که در آن کریستال های فسفر مثل تنگستات کلسیم به صورت معلق قرار گرفته اند و این کریستالهای فسفر علاوه بر اینکه عدد اتمی بالایی دارند دارای خاصیت فلورسانس نیز می باشند، یعنی در اثر جذب پرتوهای ایکس پرانرژی تعداد زیادی فوتون کم انرژی در محدوده ی نور مرئی تابش می کنند، و این فوتونهای نورانی وقتی با فیلم رادیوگرافی برخورد می کنند، در آن یک تصویر پنهان ایجاد می نمایند. دقت کنید که با افزایش ضخامت لایه ی فسفر، بازده و سرعت صفحه افزایش پیدا می کند زیرا احتمال برخورد پرتوهای ایکس با کریستالهای فسفر افزایش می یابد، منتها رزولوشن تصویر دریافتی با افزایش ضخامت لایه ی فسفر، کاهش می یابد زیرا پرتوهای نورانی تولید شده در صفحه ی تشدید کننده به محدوده ی بزرگتری از سطح فیلم تابش می شوند. نهایتا لایه ی چهارم صفحه ی تشدید کننده یک لایه ی محافظ می باشد، که این لایه ی محافظ اولاً به عنوان یک حفاظ فیزیکی برای لایه ی فسفر عمل می نماید، و ثانیاً یک سطحی ایجاد می کند که بتوانیم بدون صدمه به لایه ی فسفر، صفحه ی تشدیدکننده را تمیز کنیم.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
ساختار کاست رادیوگرافی به چه صورت است؟

ساختار کاست رادیوگرافی به چه صورت است؟

صفحه ی بالایی کاست رادیوگرافی معمولاً از یک ماده ی سبک شفاف به پرتوهای ایکس مانند پلاستیک ساخته می شود تا پرتوهای ایکس به راحتی بتوانند از آن عبور کنند، بعد از آن یک صفحه ی تشدید کننده قرار گرفته است و سپس فیلم رادیوگرافی را داریم، و پس از آن مجدداً یک صفحه ی تشدید کننده ی دیگر قرار گرفته است. ( به این ترتیب فیلم رادیوگرافی در بین دو صفحه ی تشدید کننده قرار می گیرد)  نهایتاً صفحه ی پشتی کاست را داریم که معمولاً از یک فلز با عدد اتمی بالا ساخته می شود تا پرتوهای ایکسی که بوسیله ی صفحات تشدید کننده و فیلم متوقف نشده اند را جذب کرده و از پراکندگی و بازگشت آنها به سمت فیلم رادیوگرافی جلوگیری نماید.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
استفاده از گرید چه تاثیری بر روی دز بیمار می گذارد؟

استفاده از گرید چه تاثیری بر روی دز بیمار می گذارد؟

استفاده ی از گرید باعث افزایش دُز بیمار می شود، به این دلیل که گرید بسیاری از پرتوهای ایکس را جذب می کند، در نتیجه برای آنکه به همان میزان سیاهی که در زمان عدم استفاده ی از گرید داشتیم، برسیم، بایستی عوامل تابش مثل mA یا زمان تابش دهی را افزایش بدهیم، که این موضوع به معنای افزایش دُز بیمار می باشد. از سوی دیگر یکی از مهمترین پارامترهای گرید که برای توصیف توانایی گرید در حذف پرتوهای پراکنده استفاده میشود، نسبت گرید می باشد که از تقسیم ارتفاع تیغه های گرید به فاصله ی بین تیغه ها بدست می آید یعنی ، به این ترتیب هر چه تیغه های گرید بلندتر و فاصله ی بین تیغه ها کمتر باشد، پرتوهای پراکنده ی بیشتری توسط گرید حذف می شود و در نتیجه بازده گرید بالاتر است، منتها باید دقت کنیم که افزایش نسبت گرید به معنای افزایش دُز بیمار می باشد.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
گرید چیست و به چه منظور مورد استفاده قرار می گیرد؟

گرید چیست و به چه منظور مورد استفاده قرار می گیرد؟

پرتوهای اشعه ایکس در مسیر حرکت خود یا بدون هیچ برخوردی از بدن بیمار عبور می کنند، یا توسط بدن بیمار جذب می شوند و یا از مسیر اولیه ی خود در جهات مختلف پراکنده می شوند. پرتوهایی که توسط بدن بیمار جذب می شوند و پرتوهایی که بدون هیچ برخوردی از بدن بیمار عبور می کنند برای ما تصویر واضحی از بافتهای مختلف می سازند، منتها پرتوهایی که از مسیر حرکت خودشان منحرف می شوند (پراکنده می شوند)، حامل اطلاعات تشخیصی نبوده و نویز محسوب می گردند، و اگر این پرتوهای پراکنده شده به فیلم رادیوگرافی برسند موجب محوشدن تصویر رادیوگرافی و کاهش کنتراست فیلم رادیوگرافی می گردند. به همین دلیل برای آنکه از رسیدن این پرتوهای پراکنده به سطح فیلم رادیوگرافی یا صفحه ی فلوروسکپی جلوگیری شود، از راه های متفاوتی استفاده می شود، یکی از این راه ها کاهش اندازه ی میدان اشعه ایکس بوسیله ی کلیماتور می باشد تا  به این ترتیب پرتوهای پراکنده ی کمتری تولید گردد، راه دوم استفاده ی از kvp های کوچیکتر می باشد تا به این ترتیب فوتونهای اشعه ی ایکس انرژی کمتری داشته باشند و در نتیجه پرتوهای پراکنده شده انرژی کافی برای رسیدن به فیلم رادیوگرافی را نداشته باشند. راه سوم استفاده ار باند کمپرسی برای کاهش ضخامت بافتی می باشد که در میدان اشعه ی ایکس قرار می گیرد تا به این صورت با کاهش ضخامت بافت احتمال پراکندگی پرتوها نیز کاهش پیدا کند، راه چهارم افزایش فاصله ی بین بافت بدن و فیلم است تا به این ترتیب پرتوهای پراکنده شده ی کمتری به فیلم برسند و مه آلودگی فیلم کاهش پیدا کند، نهایتاً کاربردی ترین روشی که برای کاهش پرتوهای پراکنده شده مورد استفاده قرار می گیرد استفاده ی از گرید می باشد، به این صورت که گرید از تعداد زیادی نوارهای سربی موازی ساخته شده که این نوارهای سربی توسط یک ماده ی شفاف به اشعه ی ایکس مثل کربن، آلومینیم یا پلاستیک از هم جدا شده اند، و وقتی که گرید بین بیمار و کاست رادیوگرافی قرار می گیرد، به علت همراستا بودن شکافت های گرید با منبع تولید پرتوهای ایکس، فوتونهای اشعه ایکسی که بدون هیچ برخوردی از بدن بیمار عبور می کنند، شانس بیشتری برای عبور از فضای بین تیغه ها دارند، در حالیکه پرتوهای پراکنده شده به احتمال زیاد با تیغه های گرید برخورد کرده و حذف می شوند، به این ترتیب پرتوهای پراکنده شده ی کمتری به فیلم می رسد، نویز تصویر رادیوگرافی کاهش پیدا می کند، و در نتیجه کنتراست تصویر رادیوگرافی افزایش می یابد.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب
محدود کننده دستگاه رادیوگرافی چیست؟

محدود کننده دستگاه رادیوگرافی چیست؟

محدود کننده وسیله ای است که به محفظه ی تیوب اشعه ی ایکس متصل می شود و اندازه و شکل بیم اشعه ی ایکس را تنظیم می کند، محدود کننده ها به سه گروه، سوراخ – شکاف – دیافراگم ، مخروطی ها و استوانه ای ها و  کلیماتورها تقسیم بندی می شوند، که در بین آنها کلیماتورها بهترین نوع محدود کننده ها می باشند، به این دلیل که اولاً توسط آنها میتوانیم میدانهای با ابعاد مختلف را بسازیم و ثانیاً در کلیماتورها میدان پرتو توسط یک دسته پرتو نورانی، قبل از تابش دهی به بیمار قابل ملاحظه می باشد. کلیماتورها شامل دو دسته دریچه می باشند و هر دریچه شامل چهار صفحه ی سربی است که بصورت زوج های مستقل از هم حرکت می کنند و به این ترتیب ابعاد میدان اشعه ی ایکس با تغییر ابعاد دریچه ها قابل تنظیم می باشد. مهمترین وظیفه ی محدود کننده ها حفاظت بیمار در برابر پرتوهای غیر ضروری است.   مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی

مشاهده مطلب