مهمترین بخش هر دستگاه_رادیولوژی، لامپ پرتو_ایکس است، که به آن لوله ی کولیج (Coolidge tube) گفته می شود، به این صورت که این لوله ی کولیج یک محفظه ی شیشه ای تخلیه شده از هوا است، که بخشی از جدار شیشه ای آن نازکتر از بقیه ی جداره ساخته میشود و این قسمت نازکتر در واقع همان محلی است که پرتوهای ایکس از این قسمت به بیرون از دستگاه رادیولوژی هدایت می شوند و به آن اصطلاحاً پنجره گفته می شود، از طرف دیگر این محفظه ی شیشه ای، خودش در درون یک محفظه فلزی پر از روغن قرار می گیرد، تا به این ترتیب روغن از یک طرف به انتقال حرارت تولیدی در تیوب، به بیرون از لامپ کمک کند و از طرف دیگر به عنوان یک عایق الکتریکی، ایمنی الکتریکی لامپ اشعه ی ایکس را افزایش دهد، علاوه بر این محفظه ی فلزی، فقط به پرتوهای ایکسی که از پنجره خارج میشوند اجازه ی عبور به بیرون را میدهد و پرتوهای ایکسی که در بقیه ی جهات منتشر میشوند توسط محفظه ی فلزی جذب میشوند و از نشت آنها به بیرون از لامپ جلوگیری میشود. نهایتا محفظه ی فلزی یک نقش حفاظتی هم برای محفظه ی شیشه ای دارد و از لطمه و آسیب های احتمالی به آن جلوگیری می کند. در درون لوله ی کولیج، آند و کاتد را داریم، کاتد در واقع قطب منفی لامپ اشعه ایکس است و از فیلامان، سرپوش کانونی کننده(Focusing Cup) و سیم های رابطی که برای برقراری ولتاژ و جریان مورد استفاده قرار می گیرند، تشکیل شده است. فیلامان یک سیم نازک از جنس تنگستن می باشد که به شکل یک فنر ریز ساخته شده و وقتی یک جریان الکتریکی از آن عبور می کند گرم می شود و درجه حرارت آن بالا می رود، با بالا رفتن درجه حرارت فیلامان، پدیده ی ترمویونیک اتفاق می افتد، یعنی تعدادی از الکترونهای آزاد تنگستن در اثر جذب انرژی گرمایی تا مسافت کمی از سطح فلز دور می شوند و به این ترتیب در اطراف فیلامان یک ابر الکترونی ایجاد می شود، بازده ترمویونیک هم به عواملی مثل درجه حرارت فیلامان، جنس و شکل فیلامان و همچنین اندازه ی سطح تماس اتمهای فیلامان با محیط پیرامون وابسته است و تنگستن بدلیل خواص مناسبی مثل بازده تومویونیک و نقطه ی ذوب بالایی که دارد برای ساخت فیلامان مناسب است، نهایتاً فیلامان در درون یک سرپوش کانونی کننده (focusing Cup) قرار می گیرد، که این سرپوش کانونی کننده به یک ولتاژ منفی متصل است و با احاطه کردن فیلامان از پراکندگی الکترون های فیلامان در اثر نیروی دافعه ی الکتریکی که بین الکترونها وجود دارد جلوگیری می کند، و به این ترتیب جریان الکترونها را با شکل و اندازه ی مورد نظر بر روی آند متمرکز می کند. نهایتا سرپوش کانونی کننده در بعضی از دستگاه ها به یک ولتاژ منفی بزرگ وصل می شود و به این صورت به عنوان الکترود سوم دستگاه برای کنترل جریان الکترون ها از فیلامان به سمت آند مورد استفاده قرار میگیرد. یک نکته ی دیگراینکه در لامپ های اشعه ی ایکس مدرن گاهی به جای یک فیلامان از دو فیلامان استفاده می شود، که به این لامپها، لامپهای دو کانونی گفته می شود، به این صورت که فیلامان با طول بلندتر برای تابش های با شدت بالاتر و زمان کوتاهتر مثل رادیوگرافی از قلب مورد استفاده قرار می گیرد و فیلامان کوتاهتر برای تابشهای با شدت کم و زمان طولانیتر مثل رادیوگرافی استخوان یا برای مواردی که می خواهیم تصویر رادیوگرافی وضوح بالاتری داشته باشد، مثل ماموگرافی، استفاده میشود. معمولاً هم این فیلامانها یا کنار هم قرار می گیرند و یا یک فیلامان در بالای فیلامان دیگر جایگذاری میشود، منتها در زمان تابش فقط یک فیلامان روشن است و کار می کند. جزء مهم دیگری که در تیوب اشعه ی x داریم آند یا همان قطب مثبت لامپ است، که آندها یا به صورت ثابت ساخته میشوند مثل آندهایی که در دستگاه های رادیوگرافی دندان داریم، و یا به صورت دوار ساخته میشوند مثل آندهایی که در دستگاه های رادیوگرافی Conventional داریم، منتها نکته ی مهم اینکه بین آند و کاتد یک اختلاف پتانسیل بسیاری بالایی برقرار می شود و این اختلاف پتانسیل بالا باعث می شود الکترونهای تولیدی توسط فیلامان به سمت آند شتاب بگیرند و در اثر برخورد با سطح آند، تولید اشعه ایکس کنند. از طرف دیگر مقدار جریانی که بین آند و کاتد برقرار می شود به تعداد الکترونهای تولیدی توسط فیلامان وابسته است و با افزایش شدت جریان فیلامان، حرارت فیلامان و در نتیجه تعداد الکترونهای تولیدی توسط فیلامان افزایش پیدا می کند، به این ترتیب بعد از برقراری اختلاف پتانسیل بین آند و کاتد الکترونهای بیشتری به سمت آند جریان پیدا می کنند و شدت اشعه ی ایکس تولیدی افزایش پیدا می کند، بنابراین در لامپ اشعه ایکس کمیت یا تعداد پرتوهای ایکس تولیدی بوسیله ی شدت جریان فیلامان، و انرژی پرتوهای ایکس تولیدی بوسیله ی kvp یا همان ولتاژ اعمالی بین آند و کاتد قابل کنترل است.
مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
ماهیت امواج الکترومغناطیس چیست؟ امواج الکترومغناطیس، امواجی عرضی هستن که بر اساس حرکت شتابدار بار الکتریکی در درون یک هادی تولید می شوند، یعنی اگر یک آنتن را در نظر بگیرید، این آنتن در واقع یک سیم رسانا می باشد که بار الکتریکی در درون آن به بالا و پایین حرکت می کند، و حرکت شتابدار این بار الکتریکی باعث تولید موج مغناطیسی و الکتریکی می شود، که موج الکتریکی و مغناطیسی برهم و همچنین بر جهت انتشار موج الکترومغناطیسی عمود هستند، به همین ترتیب زمانی که یک موج الکترومغناطیسی به یک آنتن برخورد می کند، بارالکتریکی داخل آنتن به بالا و پایین حرکت می کند و با اتصال سیمی به دو سر آنتن می توانیم اختلاف پتانسیل درون آنتن را در خروجی داشته باشیم. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبنحوه ی تشکیل تصویر در درون چشم به چه صورت است؟ ساختمان چشم شبیه به یک کره می باشد و وظیفه دارد نورهایی که از محیط اطراف دریافت می کند را طوری روی شبکیه متمرکز کند که تصویر دقیقی از اجسام بر روی پرده ی شبکیه تشکیل شود، در مرحله ی بعد شبکیه این تصاویر را بصورت پیامهای عصبی به مغز ارسال میکند و این تصاویر در مغز تفسیر میشوند، منتها برای داشتن یک تصویر واضح، نور باید در حین عبور از لایه های اُپتیکال چشم بگونه ای دچار شکست بشود که وقتی به شبکیه می رسد متمرکز و کانونی شده باشد. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلباولین عاملی که باعث می شود بافتهای مختلف، میزان جذب پرتوهای ایکس متفاوت و به عبارتی جذب افتراقی(differential Absorption) داشته باشند، انرژی پرتوهای ایکس است، یعنی هر چه انرژی پرتوهای ایکس یا به عبارتی kvp دستگاه اشعه ی ایکس کمتر باشد، جذب افتراقی بیشتری داریم و بافتها را به صورت مجزای از هم می بینیم، منتها کاهش انرژی باعث افزایش دُز بیمار می شود، بنابراین در انتخاب kvp ی مناسب باید دقت کنیم، عامل دوم، عدد اتمی بافت های مختلف است و چون احتمال پدیده ی فوتوالکتریک با توان سوم عدد اتمی رابطه ی مستقیم دارد، بنابراین هر چه عدد اتمی عناصر موجود در یک بافت در مقایسه با بافتهای اطراف بیشتر باشد، جذب افتراقی هم افزایش پیدا می کند، عامل دیگری که در جذب افتراقی اهمیت دارد چگالی بافت است، به این معنا که گاهی ممکن است عدد اتمی موثر دو بافت با هم برابر باشد اما چگالی یک بافت مثلاً دو برابر چگالی بافت دوم باشد، در این شرایط جذب افتراقی بافتی که چگالی بالاتری دارد، به اندازه ی 2 برابر بیشتر از بافت با چگالی پایین تر است، دلیل اهمیت جذب افتراقی هم آن است که جذب افتراقی باعث ایجاد تفاوت در شدت پرتوهای خروجی از بدن بیمار می شود، و این تفاوت امکان تمایز و تشخیص دو بافت مجاور هم را فراهم می کند، که به آن کنتراست تشعشع گفته می شود، و هر چه این کنتراست بیشتر باشد، تصویر رادیوگرافی که نهایتاً بدست می آید از کیفیت بالاتری برخودار است. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلبCT مخفف Computed Tomography می باشد و Computed Tomography به معنای نمایش یک برش یا Slice از یک جسم بصورت کامپیوتری است، به این معنا که در روش CT ما به جای تصاویر آناتومیکی که در رادیولوژی داشتیم، یک سری تصویر مقطعی داریم، که این تصاویر مقطعی به این صورت ساخته می شوند که فوتونها از یک مقطع نازک از بدن که به آن مقطع توموگرافی یا اسلایس گفته می شود، عبور میکنند و بوسیله ی آشکارسازها شمارش می شوند، در مرحله ی بعد فوتونهای شمارش شده برای آنالیز ریاضی به کامپیوتر منتقل شده و بعد از آنالیز اطلاعات توسط کامپیوتر، یک تصویر ساخته می شود که به آن تصویر CT گفته میشود. بنابراین بطور خلاصه، به تصویربرداری از اعضای داخلی بدن در مقاطع یا برش های عرضی، CT گفته می شود. نحوه ی عملکرد تیوب اشعه ی ایکس در دستگاه CT نیز مشابه دستگاههای رادیولوژی می باشد، با این تفاوت که برخلاف دستگاه های رادیولوژی که در آن ولتاژهای حدود 35 تا 150 کیلوالکترون ولت را داشتیم، در دستگاههای سی تی فقط 3 یا 4 انرژی مختلف داریم، به عنوان مثال در بعضی از دستگاههای CT فقط ولتاژهای 80 ، 100، 120 و 140 کیلوالکترون ولت را داریم و در بعضی از دستگاهها هم فقط ولتاژهای 80 ، 110 و 130 کیلوالکترون ولت در دسترس هستند، که ولتاژ 80 معمولاً برای تصویربرداری CT از کودکان استفاده می شود و ولتاژهای 100 به بالا برای تصویربرداری CT از بزرگسالان. از طرف دیگر در دستگاه های CT برخلاف دستگاه های رادیولوژی که آشکارساز، فیلم و صفحه بود، از آشکارسازهای Active که معمولاً از جنس سنتیلاسیون هستند استفاده می شود، به این صورت که وقتی فوتونهای عبوری از بدن بیمار با آشکارسازهای سنتیلاسیون برخورد می کنند، ازآشکارساز نور مرئی ساطع می شود و این نور برای ساخت تصویر سی تی تقویت شده و مورد استفاده قرار میگیرد. در بعضی از دستگاه های CT هم از آشکارسازهای اتاقک یونیزاسیون استفاده میشود، به این صورت که پرتوهای ایکس در اثر برخورد با گاز درون اتاقک باعث یونیزه شدن اتمهای گاز می شوند و در مرحله ی بعد با جمع آوری این یونهای مثبت و منفی، یک پالس الکتریکی تولید می شود، که می توانیم از آن برای ساخت تصویر استفاده کنیم. مد فیزیک دات کام، پنجره ای رو به دنیای فیزیک پزشکی
مشاهده مطلب
پاسخ به نظر